High Operating Temperature

MS920T / MS621T (Under development)

Designed with SII’s unique sealing technology, “MS920T” offers a wider operating temperature range than conventional models, while maintaining the features of current MS-series. The conventional MS rechargeable batteries have an operating temperature range up to 60°C. The new MS920T can operate at an even higher temperature of up to 85°C. It is a great fit for devices that operate under high temperature environment, and for apparatuses that have high internal temperature.

FEATURES

- Operating temperature range: -30°C to +85°C
- Temperature Characteristics: Virtually no reduction in capacity at 85°C temperature environment.
- High Temperature Storage Characteristics: Higher capacity retention ratio after 85°C long term storage.

* Please confirm the operating conditions, etc. with your contact at Seiko Instruments Inc. We would like to provide the detail characteristics of MS920T.

APPLICATIONS

Backup power for Real Time Clock or Memory Super small size power supply.

<Examples of apparatus>

- In-Vehicle equipments, Camera, Meter, etc.

SPECIFICATIONS

<table>
<thead>
<tr>
<th></th>
<th>Type</th>
<th>Nominal Voltage</th>
<th>Nominal Capacity</th>
<th>Internal impedance</th>
<th>Size</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MS920T</td>
<td>3V</td>
<td>6.5mAh</td>
<td>60Ω</td>
<td>9.5mm</td>
<td>0.45g</td>
</tr>
<tr>
<td></td>
<td>MS621T (Under development)</td>
<td>3V</td>
<td>3.0mAh</td>
<td>80Ω</td>
<td>6.8mm</td>
<td>0.23g</td>
</tr>
</tbody>
</table>

MS920T

- High temperature (85°C) Storage Characteristics
- Discharge Characteristics

![Graphs showing high temperature storage characteristics and discharge characteristics of MS920T.]
FEATURES

1. Superior leakage resistance
 Even a slight leakage from a battery may interfere with the connections made by the battery terminals, resulting in unstable device operation. Seiko Instruments Inc. offers microbatteries that are highly leak-resistant due to special sealing materials and processing technologies.

2. Large capacity
 In order to extend the operating time of devices with limited battery space, the market demands high volumetric efficiency. We offer large-capacity microbatteries developed with proprietary technology utilizing high-purity materials.

3. Stable operating voltage
 Carefully compounded ingredients allow each of our microbatteries to have a stable operating voltage over both a wide temperature range and depth of discharge.

4. High reliability
 Our microbatteries are manufactured under an integrated system featuring strict quality control, which starts with component manufacturing, through assembly and on to rigorous outgoing inspection.

A few decades ago, we commercialized a highly reliable silver oxide battery to meet the requirement of quartz watch development. Since then, we have expanded our microbattery offering and technology to support the increased diversity in electronic products available today. This brochure introduces manganese silicon lithium rechargeable batteries, titanium silicon lithium rechargeable batteries, and reflowable capacitors. We plan to continuously develop higher performance microbatteries and widen our products lineup to keep up with our emerging technologies. Please feel free to contact us with any questions you may have.

CONTENTS

MS920T/ MS621T .. 2
Microbattery and Capacitor Lineup 4
MS Lithium Rechargeable Battery 6
TS Lithium Rechargeable Battery 10
Chip type Electric Double Layer Capacitor 12
XH Capacitor ... 14
Charging Circuit 17
CPX3225A .. 18
Selection Check Sheet 19
Environmental Activities 20
Precautions for Your Safety 21
Microbattery and Capacitor Lineup

MICROBATTERY AND CAPACITOR FEATURES

Chip type electric double layer capacitor: Small and thin size chip type Electric Double Layer Capacitor.
XH capacitor: Pb-free reflowable capacitor made possible by a heat-resistant design. High capacity and long cycle characteristics are offered.
MS lithium rechargeable battery: 3V type. Large capacity and high cycle life characteristics in a compact body with excellent overdischarge characteristics featured.
TS lithium rechargeable battery: 1.5V type. Charge voltage range from 1.5V to 3.0V is supported while high reliability is achieved.

Rechargeable battery and capacitor sizes

*The rectangle and circles in the table show actual battery and capacitor sizes.

<table>
<thead>
<tr>
<th>Height</th>
<th>2.1mm</th>
<th>1.8mm</th>
<th>1.4mm</th>
<th>1.2mm</th>
<th>1.1mm</th>
<th>0.9mm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chip type</td>
<td>MS518SE</td>
<td>MS414GE</td>
<td>XH414HG</td>
<td>MS412FE</td>
<td>XH311HU</td>
<td>CPH3225A</td>
</tr>
<tr>
<td>3.2mm × 2.5mm</td>
<td>MS621FE</td>
<td>MS621E</td>
<td>MS621T</td>
<td>MS621E</td>
<td>MS621T</td>
<td>MS621T</td>
</tr>
<tr>
<td>φ6.8mm</td>
<td>MS920SE</td>
<td>MS920E</td>
<td>MS920T</td>
<td>MS920E</td>
<td>MS920T</td>
<td>MS920T</td>
</tr>
</tbody>
</table>

Applications

Smartphone
Digital still camera
Video camera
GPS-Car navigation system
Tablet
Watch
Example of a recommended application circuit: for RTC backup

![Circuit Diagram]

* This circuit diagram is a reference example. See the data sheet of each product before using it.

Example of RTC backup time, using MS414GE/MS614SE

![Graph]

RTC used: CMOS real time clock IC S-35390A, made by Seiko Instruments Inc.
Clock operating voltage: 1.1 to 5.5V, current consumption: 0.25µA
Crystal used: SSP-T7-FL, made by Seiko Instruments Inc.
CL = 6.0pF, R1 = 65kΩ max.

* This graph is a rough indication. The operating time varies depending on the actual service conditions.
MS Lithium Rechargeable Battery

MS414GE/MS412FE/MS518SE/MS614SE/MS621FE/MS920SE

FEATURES

• Large discharge capacity:
 For high operational voltage range of 3.3V to 2.0V.

• Long cycle life:
 Cycle life of over 100 cycles (over 50 cycles for MS414GE) under charge/discharge conditions of 3.1V to 2.0V (D.O.D.100%).

• Excellent overdischarge characteristics:
 Continued stable capacity characteristics even after the battery is overdischarged down to 0.0V.

• Operation over a wide temperature range:
 Operating temperature range: −20°C to +60°C
 Consult us for using the battery at a temperature beyond the above temperature range.

• RoHS Compliant

APPLICATIONS

• Backup power supply for memory or clock function in various types of electronic equipment for mobile communication, office automation, audio-visual equipment, mobile information equipment, etc. (smartphone, tablet, cellphone, PHS, cordless phone, fax machine, PC, video camera, digital camera, tuner, handy terminal, etc.)

• Main power supply for small and slim portable equipment.

SPECIFICATIONS

<table>
<thead>
<tr>
<th>Type</th>
<th>Nominal Voltage (V)</th>
<th>Charge Voltage (Standard Charge Voltage/V)</th>
<th>Nominal Capacity (mAh/1)</th>
<th>Internal Impedance (Ω)</th>
<th>Standard Charge/Discharge Current (mA)</th>
<th>Maximum Discharge Current (Continuous) (mAh)</th>
<th>Cycle Life (Time)</th>
<th>Size (mm)</th>
<th>Weight (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS414GE</td>
<td>3</td>
<td>2.8 to 3.3 (3.1)</td>
<td>2.0</td>
<td>100</td>
<td>0.010</td>
<td>0.05</td>
<td>50</td>
<td>4.8</td>
<td>1.4</td>
</tr>
<tr>
<td>MS412FE</td>
<td>3</td>
<td>2.8 to 3.3 (3.1)</td>
<td>1.0</td>
<td>100</td>
<td>0.010</td>
<td>0.10</td>
<td>100</td>
<td>4.8</td>
<td>1.2</td>
</tr>
<tr>
<td>MS518SE</td>
<td>3</td>
<td>2.8 to 3.3 (3.1)</td>
<td>3.4</td>
<td>60</td>
<td>0.010</td>
<td>0.15</td>
<td>100</td>
<td>5.8</td>
<td>1.8</td>
</tr>
<tr>
<td>MS614SE</td>
<td>3</td>
<td>2.8 to 3.3 (3.1)</td>
<td>3.4</td>
<td>80</td>
<td>0.015</td>
<td>0.25</td>
<td>100</td>
<td>6.8</td>
<td>1.4</td>
</tr>
<tr>
<td>MS621FE</td>
<td>3</td>
<td>2.8 to 3.3 (3.1)</td>
<td>5.5</td>
<td>80</td>
<td>0.015</td>
<td>0.25</td>
<td>100</td>
<td>6.8</td>
<td>2.1</td>
</tr>
<tr>
<td>MS920SE</td>
<td>3</td>
<td>2.8 to 3.3 (3.1)</td>
<td>11.0</td>
<td>35</td>
<td>0.050</td>
<td>0.80</td>
<td>100</td>
<td>9.5</td>
<td>2.1</td>
</tr>
</tbody>
</table>

*1. Nominal capacity: Typical value of discharge capacity between 3.1V and 2.0V

*2. Internal impedance is measured using an AC (Alternating Current) method at the fully charged state.

*3. Maximum discharge current indicates the value of a current for approximately 50% of the nominal capacity.

*4. Cycle Life indicates the times charge/discharge is repeated for approximately 50% of the capacity values in the specification sheet.

*5. 100% and 20% are based on nominal capacity.

*6. A constant voltage charge is recommended, but due to a limit in charge current, it is necessary to insert a resistor to regulate the charge current.

MS Lithium Rechargeable Batteries are not reflowable. Please mount them on PCB by hand soldering.
DISCHARGE CHARACTERISTICS (CHARGE VOLTAGE DEPENDENCE)

MS414GE

- **MS412FE**

<table>
<thead>
<tr>
<th>Capacity (mAh)</th>
<th>Voltage (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>3.5</td>
</tr>
<tr>
<td>0.5</td>
<td>3.0</td>
</tr>
<tr>
<td>1.0</td>
<td>2.5</td>
</tr>
<tr>
<td>1.5</td>
<td>2.0</td>
</tr>
<tr>
<td>2.0</td>
<td>1.5</td>
</tr>
<tr>
<td>2.5</td>
<td>1.0</td>
</tr>
<tr>
<td>3.0</td>
<td>0.5</td>
</tr>
</tbody>
</table>

- Charge: max. 0.05mA/60 hours (CC/CV)
- Discharge: 10 µA/c.o.v. = 2.0V (CC)

MS518SE

<table>
<thead>
<tr>
<th>Capacity (mAh)</th>
<th>Voltage (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>3.5</td>
</tr>
<tr>
<td>0.5</td>
<td>3.0</td>
</tr>
<tr>
<td>1.0</td>
<td>2.5</td>
</tr>
<tr>
<td>1.5</td>
<td>2.0</td>
</tr>
<tr>
<td>2.0</td>
<td>1.5</td>
</tr>
<tr>
<td>2.5</td>
<td>1.0</td>
</tr>
<tr>
<td>3.0</td>
<td>0.5</td>
</tr>
</tbody>
</table>

- Charge: max. 0.06mA/72 hours (CC/CV)
- Discharge: 10 µA/c.o.v. = 2.0V (CC)

MS614SE

<table>
<thead>
<tr>
<th>Capacity (mAh)</th>
<th>Voltage (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>3.5</td>
</tr>
<tr>
<td>1.0</td>
<td>3.0</td>
</tr>
<tr>
<td>2.0</td>
<td>2.5</td>
</tr>
<tr>
<td>3.0</td>
<td>2.0</td>
</tr>
<tr>
<td>4.0</td>
<td>1.5</td>
</tr>
<tr>
<td>5.0</td>
<td>1.0</td>
</tr>
<tr>
<td>6.0</td>
<td>0.5</td>
</tr>
</tbody>
</table>

- Charge: max. 0.1mA/96 hours (CC/CV)
- Discharge: 15 µA/c.o.v. = 2.0V (CC)

MS621FE

<table>
<thead>
<tr>
<th>Capacity (mAh)</th>
<th>Voltage (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>3.5</td>
</tr>
<tr>
<td>0.2</td>
<td>3.0</td>
</tr>
<tr>
<td>0.4</td>
<td>2.5</td>
</tr>
<tr>
<td>0.6</td>
<td>2.0</td>
</tr>
<tr>
<td>0.8</td>
<td>1.5</td>
</tr>
<tr>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>1.2</td>
<td>0.5</td>
</tr>
</tbody>
</table>

- Charge: max. 0.1mA/96 hours (CC/CV)
- Discharge: 50 µA/c.o.v. = 2.0V (CC)

MS920SE

<table>
<thead>
<tr>
<th>Capacity (mAh)</th>
<th>Voltage (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>3.5</td>
</tr>
<tr>
<td>0.2</td>
<td>3.0</td>
</tr>
<tr>
<td>0.4</td>
<td>2.5</td>
</tr>
<tr>
<td>0.6</td>
<td>2.0</td>
</tr>
<tr>
<td>0.8</td>
<td>1.5</td>
</tr>
<tr>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>1.2</td>
<td>0.5</td>
</tr>
</tbody>
</table>

- Charge: max. 0.2mA/96 hours (CC/CV)
- Discharge: 50 µA/c.o.v. = 2.0V (CC)

* c.o.v.: Cut off Voltage
MS Lithium Rechargeable Battery

CHARACTERISTICS

MS614SE

Charge/discharge characteristics

![Charge/discharge characteristics graph]

Discharge Characteristics at Various Discharge Currents

![Discharge Characteristics at Various Discharge Currents graph]

Overdischarge Characteristics

![Overdischarge Characteristics graph]

Discharge Temperature Characteristics

![Discharge Temperature Characteristics graph]

High Temperature (60°C) Storage Characteristics

![High Temperature (60°C) Storage Characteristics graph]

Floating Characteristics (60°C, applied voltage 3.1V)

![Floating Characteristics (60°C, applied voltage 3.1V) graph]
DIMENSIONS OF STANDARD TERMINALS OF MS LITHIUM RECHARGEABLE BATTERIES

<table>
<thead>
<tr>
<th>Battery Model</th>
<th>Dimensions</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS412FE FL26E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS414GE FL26E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS518SE FL35E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS614SE FL28E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS621FE FL11E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS920SE FL27E</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Units: mm
- The hatched parts are tin plated (Sn: 100%).
TS Lithium Rechargeable Battery <For Solar Watches> 1.5V Type

TS920E / TS621E (Under Development)

FEATURES

- Low-voltage rechargeable
- High capacity
- Long cycle life: at least 1000 cycles (20% D.O.D.)
- RoHS Compliant

TS lithium rechargeable batteries are high capacity 1.5V type non-reflowable rechargeable batteries that provide sufficient discharge capacity with a charge voltage of less than 2.0V.

SPECIFICATIONS

<table>
<thead>
<tr>
<th>Type</th>
<th>Nominal Voltage (V)</th>
<th>Charge Voltage (V)</th>
<th>Nominal Capacity (Voltage Range V) (mAh)</th>
<th>Internal Impedance*1 (Ω)</th>
<th>Standard Charge/Discharge Current (mA)</th>
<th>Cycle Life*2 (Time)</th>
<th>Diameter (mm)</th>
<th>Height (mm)</th>
<th>Weight (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TS920E</td>
<td>1.5</td>
<td>1.6 to 3.0</td>
<td>5.5 (2.3 to 1.0)</td>
<td>20</td>
<td>0.05</td>
<td>1000 (20% D.O.D.) 100 (100% D.O.D.)</td>
<td>9.5</td>
<td>2.0</td>
<td>0.46</td>
</tr>
<tr>
<td>TS621E (Under development)</td>
<td>1.5</td>
<td>1.6 to 3.0</td>
<td>2.5 (2.3 to 1.0)</td>
<td>20</td>
<td>0.05</td>
<td>6.8</td>
<td>6.0</td>
<td>2.1</td>
<td></td>
</tr>
</tbody>
</table>

*1. Value measured using an AC (Alternating Current) method in the fully charged state.
*2. Counts of charge and discharge repetition that maintains about 50% of the minimum guaranteed capacity.
*3. A constant voltage charge is recommended, but due to a limit in the charge current, it is necessary to insert a resistor to regulate the charge current.
*4. D.O.D.: Depth of Discharge

TS Lithium Rechargeable Batteries are not reflowable. Please mount them on PCB by hand soldering.

CHARACTERISTICS

Charge/discharge characteristics

* c.o.v.: Cut off Voltage
CHARACTERISTICS

TS920E

Charge Voltage Characteristics

Temperature Characteristics

High Temperature Storage Characteristics (60°C)

Float-Charge Characteristics (60°C)

STANDARD TERMINALS

TS920E FL27E

- Units: mm
- The hatched parts are tin plated (Sn: 100%).
Chip type Electric Double Layer Capacitor

CPH3225A is thinnest and smallest chip-type electric double layer capacitor. The unique ceramic packaging with superior air-tightness is used. As the result, it offers leakage resistance and humidity resistance. Also, by optimizing its materials, a 1 minute rapid charge stores approximately 85% of full capacity. Its heat-resistant design allows for Pb-free reflowable SMT board attachment.

FEATURES
- Small and thin size
- Excellent leakage resistance and humidity resistance
- Pb-free reflowable: Superior heat resistance (260°C peak) allows reflow soldering by Pr-free solder
- Long cycle Life: At least 10,000 times of charge/discharge
- Simple Charging circuit (constant voltage charging)
- Wide operating temperature range: Operating temperature range: −20°C to +60°C
 For use the battery at a temperature out of the above temperature range, please consult us.
- RoHS Compliant

APPLICATIONS
Backup Power for various devices.
Super small size power supply.
Smartphone, Tablet, Cellphone, Personal computer, IC card, Game machine, Handy terminal, Video camera, various kinds of small appliance, etc.

SPECIFICATIONS

<table>
<thead>
<tr>
<th>Type</th>
<th>Maximum Use Voltage (V)</th>
<th>Nominal Capacity (Voltage Range)</th>
<th>Internal Impedance*<Nominal> (Ω)</th>
<th>Size (L × W × H) (mm)</th>
<th>Weight (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPH3225A</td>
<td>3.3</td>
<td>4.6µAh (3.3V-1.8V) 0.011F</td>
<td>160</td>
<td>3.2 × 2.5 × 0.9</td>
<td>0.025</td>
</tr>
</tbody>
</table>

* Value measured using AC (Alternating Current) method at the discharged state.

APPLICATION NOTES
- Prohibition ripple charging
 A ripple (high frequency fluctuation of voltage) in the charge voltage extremely lowers the capacitor performance. Be sure to charge capacitors with a stable voltage.

- Charge voltage
 The age deterioration of the capacitor depends on the charge voltage. The age deterioration is accelerated as charge voltage goes higher.

- Usage environment
 Aging degradation of the capacitor varies depending on the usage environment (temperature and humidity). Contact us for further details.

CHARACTERISTICS
Charge/discharge characteristics

![Graph showing charge/discharge characteristics](image)

* c.o.v. : Cut off Voltage
Chip type Electric Double Layer Capacitor

CHARACTERISTICS

Charge Time Characteristics

<table>
<thead>
<tr>
<th>Charge Time (minutes)</th>
<th>Capacity retention ratio (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>100</td>
<td>60</td>
</tr>
<tr>
<td>1000</td>
<td>80</td>
</tr>
</tbody>
</table>

Charge: max. 10mA/3.3V/ respective charge time (CC/CV)
Discharge: 5uA/c.o.v. = 2.0V (CC)

Float-Charge Characteristics (60°C, 90%RH)

<table>
<thead>
<tr>
<th>Float Charge Period (days)</th>
<th>Capacity retention ratio (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>90</td>
</tr>
<tr>
<td>10</td>
<td>80</td>
</tr>
<tr>
<td>15</td>
<td>70</td>
</tr>
<tr>
<td>20</td>
<td>60</td>
</tr>
</tbody>
</table>

Storage condition: 60°C/90%RH/3.3V applied
[Capacity measurement conditions]
Charge: max. 1mA/3.3V/2 hours (CC/CV)
Discharge: 5uA/c.o.v. = 2.0V (CC)

REFLOW SOLDERING CONDITIONS

Reflow Profile Example

- Temperature: 200°C
- Time above 200°C: 0 seconds
- Recommended Board Layout

Recommended Reflow Conditions

- Peak temperature: within 5 seconds
- Max. 260°C (within 5 seconds)

The times of repeated reflow soldering must be two times or less.
The Temperature must be measured at top of the cell.

DIMENSIONS

CPH3225A

- Units: mm

Micro Battery 2014-2015 Seiko Instruments Inc. 13
The XH series capacitor has a better discharge characteristic above 3V. It is an environmentally friendly product that is reflow mounted by Pb-free soldering. It features high capacity, and long-term reliability, as well as a wide operating voltage range. It is thus suitable for backup power supply of clock and memory functions on mobile and information devices.

FEATURES

- Pb-free reflowable:
 Superior heat resistance (260°C peak) allows reflow soldering by Pb-free solder
- Wide operating voltage range from 0V to 3.3V
- High capacity: 0.08F with “414” size
- Long Cycle Life:
 At least 10,000 times of charge/discharge
- Simple charging circuit (constant voltage charging)
- Wide operating temperature range:
 Operating temperature range: –20°C to +60°C
 For using the battery at a temperature out of the above temperature range, please consult us.
- RoHS Compliant

APPLICATIONS

Backup power supply for memory and clock functions of smartphone, tablet, cellphone, PHS, cordless phone, digital still camera, game machine, and printer, etc.

SPECIFICATIONS

<table>
<thead>
<tr>
<th>Type</th>
<th>Electrical Specifications (Normal Temperature)*1</th>
<th>Size</th>
<th>Weight (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Maximum Use Voltage (V)</td>
<td>Capacitance (F)</td>
<td>Internal Impedance*2 (Ω)</td>
</tr>
<tr>
<td>XH311HG</td>
<td>3.3</td>
<td>0.02</td>
<td>300</td>
</tr>
<tr>
<td>XH311HU</td>
<td>3.3</td>
<td>0.035</td>
<td>150</td>
</tr>
<tr>
<td>XH414HG</td>
<td>3.3</td>
<td>0.08</td>
<td>100</td>
</tr>
</tbody>
</table>

*1. Normal temperature: 23°C ± 3°C. Electrical characteristics and aging degradation of the products depend on temperature.
*2. Value measured using AC (Alternating Current) method at the discharged state.

<APPLICATION NOTES>

- **Prohibition ripple charging**
 A ripple (high frequency fluctuation of voltage) in the charge voltage extremely lowers the capacitor performance. Be sure to charge capacitors with a stable voltage.

- **Charge voltage**
 The age deterioration of the capacitor depends on the charge voltage. The age deterioration is accelerated as charge voltage goes higher.

- **Usage environment**
 Aging degradation of the capacitor varies depending on the usage environment (temperature and humidity). Contact us for further details.

CHARACTERISTICS

Charge/discharge characteristics

XH311HG

XH311HU

XH414HG

*c.o.v....Cut off Voltage
CHARACTERISTICS

XH414HG

Charge Time Characteristics

- Charge: Constant current/constant voltage
- Discharge: Constant current 10µA, c.o.v. = 2.0V

Discharge Current Characteristics

- Charge: Constant current/constant voltage
- Discharge: Constant current 10µA, c.o.v. = 2.0V

Temperature Characteristics

Float-Charge Characteristics (60°C, 50%RH)

REFLOW SOLDERING CONDITIONS

- Reflow Profile Example
- The times of repeated reflow soldering must be two times or less.
- The Temperature must be measured at top of the cell.
- The peak temperature is within five seconds.

Recommended Reflow Condition

Max. 260°C (within 5 seconds)
XH Capacitor

Pb-free reflowable

STANDARD TERMINALS

XH311HG IV07E
XH311HU IV07E

- Units: mm
- The hatched parts are tin plated (Sn: 100%).
Charging Circuit

1. Charging circuit for MS Lithium Rechargeable Battery

A resistor must be inserted to regulate the charging current, because our rechargeable batteries have a limit for charging current.

Please see the below table for recommended resistor values. Those values are minimum for each battery type and “Vc” in the charging circuit.

The “Vc” is the actual charging voltage. Vc value is calculated by Vo-Vf, deducting Vf (forward voltage drop of the diode) from Vo (the power source voltage).

For example, MS614SE and Vc 3.3V, the resistor value should be 620 ohm or more.

Regarding charging voltage, the actual charging voltage “Vc” must Not be higher than 3.3V.

Table of minimum resistor values.

<table>
<thead>
<tr>
<th>Vc (V)</th>
<th>MS414GE Resistor (ohm)</th>
<th>MS412FE Resistor (ohm)</th>
<th>MS518SE Resistor (ohm)</th>
<th>MS614SE Resistor (ohm)</th>
<th>MS621FE Resistor (ohm)</th>
<th>MS621T Resistor (ohm)</th>
<th>MS920SE Resistor (ohm)</th>
<th>MS920T Resistor (ohm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3</td>
<td>2,000</td>
<td>2,000</td>
<td>1,500</td>
<td>620</td>
<td>620</td>
<td>620</td>
<td>620</td>
<td>620</td>
</tr>
<tr>
<td>3.2</td>
<td>1,600</td>
<td>1,600</td>
<td>1,000</td>
<td>430</td>
<td>430</td>
<td>430</td>
<td>430</td>
<td>430</td>
</tr>
<tr>
<td>3.1</td>
<td>1,600</td>
<td>1,600</td>
<td>820</td>
<td>330</td>
<td>330</td>
<td>330</td>
<td>330</td>
<td>330</td>
</tr>
<tr>
<td>3.0</td>
<td>1,500</td>
<td>1,500</td>
<td>750</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>2.9</td>
<td>1,500</td>
<td>1,500</td>
<td>750</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>2.8</td>
<td>1,500</td>
<td>1,500</td>
<td>750</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
</tr>
</tbody>
</table>

Discharge capacity depends on charging voltage (Please see Page 7) Lower than 3V charging may cause lower discharge capacity.

For TS Lithium Rechargeable Battery or other batteries, please contact us.

2. Charging circuit for XH capacitor and CPH capacitor

You do not need to insert a resistor to regulate charging current.

Our XH capacitor or CPH capacitor do not have a limit for charging current.

Please keep the limit of Maximum charging voltage, 3.3V.

Vc value is calculated by Vo-Vf, deducting Vf (forward voltage drop of the diode) from Vo (the power source voltage).

The actual charging voltage “Vc” must not be higher than 3.3V.

This guidance is for XH capacitors and CPH capacitors. For CPX capacitor or other capacitors, please contact us.
FEATURES

- **Large discharge current and super rapid charging achieved by low internal resistance**
 Reduced internal resistance to 25 ohms, one-third that of the conventional EDLCs, allows discharge current of up to several tens of mAs and rapid charging within a few seconds.

- **Chargeable by slight power, thanks to low leak current**
 Reduced leak current to about 10 nA level, approximately one-tenth that of the conventional EDLCs, allows sufficient charging with several micro Watts from a slight energy harvesting power source.

APPLICATIONS

- Electric storage device for energy harvesting
- Power source or Electric storage for Wireless Sensor Network, RFID tag, RF remote control for digital home electrical appliance
- Power source or Electric storage for Contactless IC card, multi-functional IC card
- Instant back-up for CPU or DRAM and power source for saving data on flash memory

SPECIFICATIONS

<table>
<thead>
<tr>
<th>Part number</th>
<th>Maximum use voltage</th>
<th>Capacitance</th>
<th>Internal impedance</th>
<th>Size (L x W x H)</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPX3225A752D</td>
<td>2.6V</td>
<td>7.5mF</td>
<td>25Ω</td>
<td>3.2 x 2.5 x 0.9mm</td>
<td>0.024g</td>
</tr>
<tr>
<td>CPX3225A252D</td>
<td>2.6V</td>
<td>2.5mF</td>
<td>25Ω</td>
<td>3.2 x 2.5 x 0.9mm</td>
<td>0.024g</td>
</tr>
</tbody>
</table>
Microbattery and Capacitor Selection Check Sheet

CHECK SHEET

If you are considering the purchase of one or more of our microbatteries or capacitors, please complete this check sheet and send it to us. We will let you know which products will be optimum for you to use.

Fax Sheet

Micro-Energy Division Sales Sec. +81-43-211-8034 Battery Sales Person

1. Your company name

2. Which application do you use?

3. Your expected backup period hour / day / month

4. Your requested delivery date mm / yy

5. Operation voltage of the device for backup V to V

6. Consumption current at backup time mA • μA

7. Setting value of charging voltage V

8. Presence of reverse current protection diode Yes • No

9. Vf characteristics of the reverse current protection diode (at 10μA) V

10. Resistance value of charging protection resistance Ω

11. Limit of charging time

12. Required cycle life times

13. Other requests

14. Expected life (e.g., xx years or backup for xx hours)

15. Ambient temperature and humidity

Your contact information

Name
Section
Phone
Fax
E-mail

Micro Battery 2014-2015 Seiko Instruments Inc.
Environmental Activities at Micro-Energy Division

Environment & Quality Policy
Seiko Instruments Inc., Micro-Energy Division is located in Ayashi, a city with beautiful nature, in Miyagi Prefecture. Our aim is to provide customer satisfaction and harmony with the environment through all our products, from Micro battery to other electronic products, and sales activities.

1. We adhere firmly to laws, regulations and customers' specified requirements.
2. We aim to prevent pollution, to reduce CO₂, and to conserve biodiversity.
3. We set goals, take actions, conduct regular reviews, and improve the system and performance continuously.
4. We contribute to the society by supporting green procurement, developing green products, and promoting green life activity.
5. We adhere to regulations and recommendations regarding Chemical substance content in our products and will promote reduction and replacement.
6. We vigorously educate ourselves and try to engage voluntarily in green life activity.

Based on the above policy, the following six environmental approaches are now being implemented throughout Micro-Energy Division.

1. Enrich the line up of Eco-Products
 - We introduced the SII Green Product Label System which is equivalent to the ISO 14021 Type II environmental label. At the end of FY2006, 100% of our products are certified as SII Green Products. In addition, 38 products are certified as SII "High Grade" Green Products.

2. Reduction of Greenhouse Gas
 - We practice various CO₂ reduction measures like using Eco-machinery. Since 1997, we have successfully reduced a total of 54,100 tons of CO₂. We believe our efforts contribute to the prevention of global warming.

3. 3R Promotion Activity
 - We have promoted the "reduce and reuse" activities and also promoted recycling at the end of the production process. With these activities, we achieved "Zero-emission" in 2004. We have reduced the non-recyclable wastes to less than 1 ton - less than 1% of our 1997 results.

4. Biodiversity Conservation
 - We endeavor to deepen our understanding on the relevancy between biodiversity and our business activities, and to contribute to the conservation of biodiversity by participating local community activities.

5. Green Purchasing
 - We adhere to a green purchasing campaign through the purchase of ingredients, manufacturing materials, and other necessary products, whenever appropriate.

6. Green Life
 - With the participation of all of Micro-Energy Division members, we deploy a clean-up and beautification campaign in all areas surrounding our factory once a year. In addition, we participate in the clean up activity at Hirose River once a year.

7. Conflict Minerals
 - Recognizing the international importance of conflict minerals issue, we prohibit the use of such minerals.
Precautions for Your Safety

Micro-Energy Division Lithium rechargeable batteries (MS, TS) contain flammable organic solvents. For your safety, please follow the following precautions.

WARNING!

- **Do not charge by higher current or higher voltage than specified.**
 - Doing so may generate gas inside the battery, resulting in swelling, fire, heat generation or bursting.
- **Do not heat, disassemble nor dispose of in fire.**
 - Doing so damages the insulation materials and may cause fire, heat generation, leakage or bursting.
- **Do not solder directly to the battery.**
 - If soldering is performed directly to the battery, the battery is heated up, consequently causing leakage, explosion or fire due to overheating from internal short-circuit.
- **Do not short.**
 - If the (+) and (-) come into contact with metal materials, short-circuit occurs. As a result, fire, heat generation, leakage or bursting may occur.
- **Keep batteries out of children’s reach.**
 - It is dangerous that children swallow the battery. When you design mechanical hardware around the battery, please fix the battery firmly in order to prevent children from removing it. When you store the batteries, please keep the batteries out of children’s reach. If a battery is swallowed, consult a physician immediately.
- **Do not reverse placement of (+) and (-).**
 - If the (+) and (-) side of the battery is reverse inserted, it may cause a short-circuit or over discharge of the battery on some equipment and it may induce overheating, explosion or fire.
- **Do not weld terminals to the battery.**
 - The heat by welding may cause fire, heat generation, leakage or bursting.
 - We weld standard terminals under strictly controlled conditions. If you need to weld terminals to the battery, please consult us in advance.
- **Do not discharge by force.**
 - If the battery is discharged by direct connection to an external power supply etc., voltage of the battery will decline lower than 0 volts (electrical reversal) and will cause the battery case to expand, heat, explode or burn.
- **In case of leakage or a strange smell, keep away from fire to prevent ignition of any leaked electrolyte.**
- **In case of disposal, insulate between (+) and (-) of battery by an insulating material.**
 - Jumbling batteries or with other metal materials cause short-circuit. As a result, fire, heat generation, leakage or bursting may occur.

CAUTION!

- **If leaked liquid gets in the eyes, wash them with clean water and consult a physician immediately.**
- **Do not use new and used batteries together.**
 - It may cause fire, heat generation, leakage or bursting.
- **If you connect two or more batteries in series or parallel, please consult us in advance.**
 - It may cause bursting or fire due to unbalanced load or voltage.
- **Do not use nor leave the batteries in direct sunlight nor in high-temperature areas.**
 - It may cause fire, heat generation, leakage or bursting.
- **Do not apply strong pressure to the batteries nor handle roughly.**
 - It may cause fire, heat generation, leakage or bursting.
- **Avoid contact with water.**
 - It may cause heat generation.**
- **Keep batteries away from direct sunlight, high temperature and humidity.**
 - It may cause heat generation or performance deterioration.

For prevention of performance deterioration of battery

- **Pay attention to mat or sheet for ESD.**
 - Battery with tabs or battery on PCB may short-circuit on the mat for ESD. As a result the voltage of the cell is reduced.
- **Pay attention to soldering by tips.**
 - Do not touch the battery by solder chips, when soldering another components after equipping battery. Keep any high temperature process away from battery.
- **Pay attention to material of jig for pick and place.**
 - Use non-conductive material of jig for pick and place of batteries, for short-circuit protect. If short-circuit of battery occurs, the voltage of battery drops down quickly but raises gradually.
 - Pay attention to washing and drying. Some detergent or high temperature drying may cause deterioration of battery. If you need to wash batteries, consult us.

International Transportation and Disposal

International Air/Marine/Ground Transportation

- Regarding the transport of Lithium battery, organizations like IATA, ICAO, IMO, DOT have determined transport regulations, based on the United Nations Regulations.
 - The Stil Lithium rechargeable batteries can be transported being not subject to the provisions of dangerous goods, if they meet the following requirements.
 - (a) <Caution Label> Lithium battery handling label (IATA Dangerous Goods Regulations Figure 7.4.1) must be put on each package.
 - (b) <Not Restricted Declaration> Each shipment must be accompanied with a document indicating that the packages contain Lithium batteries, that the packages must be handled with care, and that special procedures should be followed in the event the package is damaged; and a telephone number for additional information.
 - (c) <Weight Limit> Except in the case of packed with equipment, package may not exceed 2.5 kg gross mass.
 - (d) <Strong Packaging> Batteries are separated so as to prevent short-circuit and are packed in strong packaging.
 - (e) <Package Drop Test> Each packages is capable of withstanding a 1.2m drop test in any orientation without damage to batteries contained.

Disposal

- Recent environment protection concerns have increased globally and waste and recycling are regulated in the world. The current regulations differ in each country, state and local municipality. Please consult local regulations and authorities for recommended disposal of batteries. If you are in question of application or safety of our batteries, please consult your local authorities.
Precautions for Your Safety

Micro-Energy Division capacitors (XH, CPH, CPX) contain flammable organic solvents. For your safety, please follow the following precautions.

- **Do not charge by higher current or higher voltage than specified.**
 Doing so may generate gas inside the capacitor, resulting in swelling, fire, heat generation or bursting.

- **Do not reverse placement of (+) and (-)**
 SII capacitors have polarity. If the (+) and (-) side of the capacitor is reverse inserted, it may cause short-circuit or over discharge of the capacitor on some equipment and it may induce overheating, explosion or fire.

- **Do not solder directly to the capacitor (for XH only)**
 If soldering is performed directly to the capacitor, the capacitor will over heat and, consequently cause leakage, explosion or fire due to overheating from internal short-circuit.

- **Keep capacitors out of children’s reach.**
 It is dangerous that children swallow the capacitor.

- **If leaked liquid gets in the eyes, wash them with clean water and consult a physician immediately.**

- **Do not use nor leave the capacitors in direct sunlight nor in high-temperature areas.**
 It may cause fire, heat generation, leakage or bursting.

- **Do not make the capacitor airtight by sealing it with adhesive agent or coating agent.**
 It may cause short-circuit because of generated and accumulated electrolyte gas.

WARNING!

- **When you design mechanical hardware around the capacitor, please fix the capacitor firmly in order to prevent children from removing it.**

- **When you store the capacitors, please keep the capacitors out of children’s reach. If a capacitor is swallowed, consult a physician immediately.**

CAUTION!

- **Do not use new and used capacitors together. Do not use different types of capacitors together.**
 It may cause fire, heat generation, leakage or bursting.

- **If you connect two or more capacitors in series or parallel, please consult us in advance.**
 It may cause bursting or fire due to unbalanced load or voltage.

- **Keep capacitors away from direct sunlight, high temperature and humidity.**
 It may cause heat generation or performance deterioration.

All data, dimensions, characteristics and values shown in this catalogue are for reference only. Please contact your local Seiko Instruments Representative for current detailed specifications.

IMPORTANT

1. The information herein is subject to change without notice.
2. Neither reproduction, duplication nor unauthorized use of this catalog in whole or part is allowed without the prior written approval of Seiko Instruments Inc.
3. The colors of the products reproduced herein ("Products") may be different from the actual colors. Check colors on actual products before using the Products.
4. Circuits and respective application methods described herein are for reference only. Seiko Instruments Inc. shall not be liable for any damages or losses resulting from any claim by third parties that any Products or application methods described herein infringe any right intellectual property right. All intellectual property rights with respect to the Products belong exclusively to Seiko Instruments Inc.
5. When Products include Strategic Products (or Services) stipulated in the Foreign Exchange and Trade Control Law, they shall not be exported without permission of governmental authorities.
6. The Products are designed for consumer equipment and cannot be used as part of any device or equipment which influences the human body or requires a significantly high reliability, such as physical exercise equipment, medical equipment, disaster prevention equipment, gas related equipment, vehicles, aircraft and equipment mounted on vehicles without our prior express written consent.
Temperature Characteristics:

High Temperature Storage Characteristics:

To provide the detail characteristics of MS920T.

<table>
<thead>
<tr>
<th>Model</th>
<th>Nominal Voltage (V)</th>
<th>Nominal Capacity (mAh)</th>
<th>Standard Discharge Current (µA)</th>
<th>Diameter (mm)</th>
<th>Height (mm)</th>
<th>Weight (g)</th>
<th>C.C.V. 1º</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS920T</td>
<td>6.0</td>
<td>5.0</td>
<td>60</td>
<td>7.9</td>
<td>1.25</td>
<td>0.26</td>
<td>1.45</td>
</tr>
<tr>
<td>(Under development)</td>
<td>3.0mAh</td>
<td>4.0</td>
<td>20</td>
<td>6.8</td>
<td>1.65</td>
<td>0.32</td>
<td>1.45</td>
</tr>
<tr>
<td></td>
<td>2.0</td>
<td>3.0</td>
<td>10</td>
<td>5.8</td>
<td>2.15</td>
<td>0.23</td>
<td>1.45</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>2.0</td>
<td>5</td>
<td>4.8</td>
<td>1.65</td>
<td>0.18</td>
<td>1.45</td>
</tr>
</tbody>
</table>

Charge: Constant current / Constant voltage

25uA / c.o.v.=2.0V / RT

High temperature (85˚C) Storage Characteristics

That have high internal temperature.

The conventional MS rechargeable batteries maintaining the features of current MS-series.

**O7FIJDMFFRVJQNFOUT $BNFSB .FUFS FUD &YBNQMFTPGBQQBSBUVT #BDLVQQPXFSGPS3FBM5JNF$MPDLPS.FNPSZ APPLI

2.0 2.2 2.8 3.4 25uA / c.o.v.=2.0V / 24

Charge Characteristics

[Capacity measurement conditions]

Omax 0.2mA / 3.1V / 72hours / RT

Discharge Characteristics

Diameter Height Internal impedance

Model Characteristics (RT) Dimensions Weight (g) C.C.V. 1º

<table>
<thead>
<tr>
<th>Model</th>
<th>Nominal Voltage (V)</th>
<th>Nominal Capacity (mAh)</th>
<th>Standard Discharge Current (µA)</th>
<th>Diameter (mm)</th>
<th>Height (mm)</th>
<th>Weight (g)</th>
<th>C.C.V. 1º</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR416SW</td>
<td>337</td>
<td>1.55</td>
<td>7.5</td>
<td>4.8</td>
<td>1.65</td>
<td>0.11</td>
<td>1.35</td>
</tr>
<tr>
<td>SR421SW</td>
<td>348</td>
<td>1.55</td>
<td>12</td>
<td>4.8</td>
<td>2.15</td>
<td>0.14</td>
<td>1.35</td>
</tr>
<tr>
<td>SR512SW</td>
<td>335</td>
<td>1.55</td>
<td>5.5</td>
<td>5.8</td>
<td>1.25</td>
<td>0.15</td>
<td>1.45</td>
</tr>
<tr>
<td>SR516SW</td>
<td>317</td>
<td>1.55</td>
<td>12.5</td>
<td>5.8</td>
<td>1.65</td>
<td>0.18</td>
<td>1.45</td>
</tr>
<tr>
<td>SR521SW</td>
<td>379</td>
<td>1.55</td>
<td>13</td>
<td>5.8</td>
<td>2.15</td>
<td>0.23</td>
<td>1.45</td>
</tr>
<tr>
<td>SR527SW</td>
<td>319</td>
<td>1.55</td>
<td>22</td>
<td>5.8</td>
<td>2.70</td>
<td>0.29</td>
<td>1.45</td>
</tr>
<tr>
<td>SR616SW</td>
<td>321</td>
<td>1.55</td>
<td>16</td>
<td>6.8</td>
<td>1.65</td>
<td>0.25</td>
<td>1.45</td>
</tr>
<tr>
<td>SR621SW</td>
<td>364</td>
<td>1.55</td>
<td>21</td>
<td>6.8</td>
<td>2.15</td>
<td>0.32</td>
<td>1.45</td>
</tr>
<tr>
<td>SR626SW</td>
<td>377</td>
<td>1.55</td>
<td>24</td>
<td>6.8</td>
<td>2.60</td>
<td>0.39</td>
<td>1.45</td>
</tr>
<tr>
<td>SR121SW</td>
<td>346</td>
<td>1.55</td>
<td>10</td>
<td>7.9</td>
<td>1.25</td>
<td>0.26</td>
<td>1.45</td>
</tr>
<tr>
<td>SR16SW</td>
<td>315</td>
<td>1.55</td>
<td>21</td>
<td>7.9</td>
<td>1.65</td>
<td>0.33</td>
<td>1.45</td>
</tr>
<tr>
<td>SR721SW</td>
<td>362</td>
<td>1.55</td>
<td>23</td>
<td>7.9</td>
<td>2.10</td>
<td>0.42</td>
<td>1.45</td>
</tr>
<tr>
<td>SR726SW</td>
<td>397</td>
<td>1.55</td>
<td>34</td>
<td>7.9</td>
<td>2.60</td>
<td>0.52</td>
<td>1.45</td>
</tr>
<tr>
<td>SR731SW</td>
<td>329</td>
<td>1.55</td>
<td>36</td>
<td>7.9</td>
<td>3.10</td>
<td>0.56</td>
<td>1.45</td>
</tr>
<tr>
<td>SR415SW</td>
<td>384</td>
<td>1.55</td>
<td>45</td>
<td>7.9</td>
<td>3.60</td>
<td>0.67</td>
<td>1.45</td>
</tr>
<tr>
<td>SR416SW</td>
<td>373</td>
<td>1.55</td>
<td>27</td>
<td>9.5</td>
<td>1.65</td>
<td>0.51</td>
<td>1.45</td>
</tr>
<tr>
<td>SR20SW</td>
<td>371</td>
<td>1.55</td>
<td>46</td>
<td>9.5</td>
<td>2.05</td>
<td>0.60</td>
<td>1.45</td>
</tr>
<tr>
<td>SR20SW</td>
<td>395</td>
<td>1.55</td>
<td>53</td>
<td>9.5</td>
<td>2.70</td>
<td>0.75</td>
<td>1.45</td>
</tr>
<tr>
<td>SR936SW</td>
<td>394</td>
<td>1.55</td>
<td>85</td>
<td>9.5</td>
<td>3.60</td>
<td>1.10</td>
<td>1.45</td>
</tr>
<tr>
<td>SR1120SW</td>
<td>381</td>
<td>1.55</td>
<td>53</td>
<td>11.6</td>
<td>2.05</td>
<td>0.93</td>
<td>1.45</td>
</tr>
<tr>
<td>SR1130SW</td>
<td>390</td>
<td>1.55</td>
<td>80</td>
<td>11.6</td>
<td>3.05</td>
<td>1.29</td>
<td>1.45</td>
</tr>
<tr>
<td>SR435SW</td>
<td>301</td>
<td>1.55</td>
<td>120</td>
<td>11.6</td>
<td>4.20</td>
<td>1.75</td>
<td>1.45</td>
</tr>
<tr>
<td>SR445SW</td>
<td>303</td>
<td>1.55</td>
<td>160</td>
<td>11.6</td>
<td>5.40</td>
<td>2.20</td>
<td>1.45</td>
</tr>
</tbody>
</table>

1º The standard capacity is calculated by the measurement result of discharging time with the standard discharge current to the voltage 1.2V.

2º C.C.V.: Closed Circuit Voltage / Low Drain 2kΩ 7.8ms Pulse

High Drain Battery

<table>
<thead>
<tr>
<th>Model</th>
<th>Nominal Voltage (V)</th>
<th>Nominal Capacity (mAh)</th>
<th>Standard Discharge Current (µA)</th>
<th>Diameter (mm)</th>
<th>Height (mm)</th>
<th>Weight (g)</th>
<th>C.C.V. 1º</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR626W</td>
<td>376</td>
<td>1.55</td>
<td>28</td>
<td>6.8</td>
<td>2.60</td>
<td>0.39</td>
<td>1.35</td>
</tr>
<tr>
<td>SR721W</td>
<td>361</td>
<td>1.55</td>
<td>26</td>
<td>7.9</td>
<td>2.10</td>
<td>0.41</td>
<td>1.35</td>
</tr>
<tr>
<td>SR726W</td>
<td>396</td>
<td>1.55</td>
<td>34</td>
<td>7.9</td>
<td>2.60</td>
<td>0.52</td>
<td>1.35</td>
</tr>
<tr>
<td>SR41W</td>
<td>392</td>
<td>1.55</td>
<td>45</td>
<td>7.9</td>
<td>3.60</td>
<td>0.67</td>
<td>1.35</td>
</tr>
<tr>
<td>SR920W</td>
<td>370</td>
<td>1.55</td>
<td>42</td>
<td>9.5</td>
<td>2.05</td>
<td>0.60</td>
<td>1.40</td>
</tr>
<tr>
<td>SR927W</td>
<td>399</td>
<td>1.55</td>
<td>53</td>
<td>9.5</td>
<td>2.70</td>
<td>0.75</td>
<td>1.40</td>
</tr>
<tr>
<td>SR1120W</td>
<td>391</td>
<td>1.55</td>
<td>53</td>
<td>11.6</td>
<td>2.05</td>
<td>0.93</td>
<td>1.40</td>
</tr>
<tr>
<td>SR1130W</td>
<td>389</td>
<td>1.55</td>
<td>80</td>
<td>11.6</td>
<td>3.05</td>
<td>1.29</td>
<td>1.40</td>
</tr>
<tr>
<td>SR435W</td>
<td>386</td>
<td>1.55</td>
<td>120</td>
<td>11.6</td>
<td>4.20</td>
<td>1.75</td>
<td>1.40</td>
</tr>
<tr>
<td>SR445W</td>
<td>357</td>
<td>1.55</td>
<td>160</td>
<td>11.6</td>
<td>5.40</td>
<td>2.20</td>
<td>1.40</td>
</tr>
</tbody>
</table>

1º The standard capacity is calculated by the measurement result of discharging time with the standard discharge current to the voltage 1.2V.

3º C.C.V.: Closed Circuit Voltage / High Drain 200Ω 5sec DC
Micro-Energy Division who manufactures the products described in this catalog holds the ISO 9001 quality management system certificate, and the ISO 14001 environmental management systems certificate.