Seiko Instruments Inc. (SII), founded in 1937 as a member of the Seiko Group specializing in the manufacture of watches, has leveraged its core competency in high precision watches to create a wide range of new products and technologies.

Over the years SII has developed high-precision processed parts and machine tools that pride themselves on their sub-micron processing capability, quartz crystals that came about as a result of our quartz watch R&D, and electronic components such as micro batteries. Optimizing our extensive experience and expertise, we have since diversified into such new fields as compact, lightweight, exceedingly quiet thermal printers, and inkjet printheads, a key component in wide format inkjet printers for corporate use.

SII, in the years to come, will maintain an uncompromised dedication to its time-honored technologies and innovations of craftsmanship, miniaturization, and efficiency that meet the needs of our changing society and enrich the lives of those around us.
PRECISION, CRAFTSMANSHIP and MINIATURIZATION

Leveraging Watch Making Technology

With Precision, we apply our Craftsmanship to provide Miniaturization advantages to customers’ product development around the world.

Stable and reliable Rechargeable Battery & Capacitor

For the IoT product

For material used in harsh environments

No corrosion, strong, ultra high elasticity and no magnetization
Superior material "SPRON"

Excellent heat and corrosion resistance
Samarium-cobalt Magnet "DIANET"

For magnetic applied sensor components

Precise Timing with Lowest Power consumption

Small and powerful Silver Oxide Battery
Silver Oxide Battery "SEIZAIKEN"

Precise Timing for Electronic Devices

Tuning Fork Quartz Crystal Resonator

For wearable devices
Electronic Components and High-performance Materials

SII’s electronic components were originally derived from the development and manufacturing of quartz watches.

Since 1953

No corrosion, strong, ultra high elasticity Co-Ni alloy product
"SPRON"

The sophisticated metal product, "SPRON", was born as a material to be used in a “mainspring”, which is a drive source of mechanical watches. “SPRON” has been used for over 50 years as a drive source of watches by utilizing its high elasticity, high strength, and high heat resistance. Evaluated highly for its corrosion resistance and durable quality, "SPRON" is used for key devices in various fields like valves in semiconductor manufacturing equipment and dental treatment devices.

Since 1975

Small and powerful Silver Oxide Battery
Silver Oxide Battery "SEIZAIKEN"

A small-sized primary battery that features a large electrical capacity and almost no voltage drop until the last stage of electrical discharge even though its minimum diameter is 4 mm. Since the birth of quartz watches, we have developed batteries to increase their electrical capacity. We have also pursued better leakage resistance and long-term reliability characteristics. It is expected to be used as a power supply for disposable, wearable, IoT, and the low energy Bluetooth products.

Since 1976

Precise Timing for Electronic Devices
Tuning Fork Quartz Crystal Resonator

Tuning Fork Quartz Crystal Resonators were developed as the basis for accuracy in the Quartz Watch. Our high quality and reliability was prioritized to meet the stringent requirements for watches. Recent demand in IoT developments where devices are required to operate with low power consumption and accurate communication protocol timing have increased the demand for smaller components with the same rugged reliability as is required in watches. For applications which require absolute lowest power consumption, our Timing Crystals are available in our Low CL specifications.

Since 1979

Excellent heat and corrosion resistance
Samarium-cobalt Magnet "DIANET"

“DIANET”, which has its origin in rotor magnets of quartz watches, has superior heat resistance and strong magnetic force even though its outside diameter is only 1 mm or less. The Sendai Unit acquired IATF 16949 Quality Management System for the automotive production industry. “DIANET” is used for a wide range of automotive products, and its advanced quality and performance are highly recognized. In addition, “DIANET” is also used in actuators of cameras for smart phones and medical devices.

Since 1988

Stable and reliable Rechargeable Battery and Capacitor

The rechargeable batteries supporting a wide temperature range of -40°C to 85°C are available in our lineup. They are suitable for operating very low power consumption devices, for backup power supply of clock and memory functions of a wide range of products. The capacitor will correspond to the new needs of energy harvesting devices. Capacitors are extremely useful in various applications.
Micro battery Products Lineup

Our rechargeable batteries, capacitors and silver oxide batteries are available in various sizes for broad range of applications.

Lithium Rechargeable Battery Features
- Excellent cycle characteristics
- Available in many compact sizes
- Wide Temperature Range (MS-T)

Capacitor Features
- Reflowable and high reliability
- Super small and thin size
- High output and Low ESR (CPX)

Silver Oxide Battery Features
- Stable output voltage
- Available in many sizes of φ11mm or less
- High capacity and High output

Lithium Rechargeable Battery

<table>
<thead>
<tr>
<th>Series</th>
<th>Type</th>
<th>Size (DxH) (mm)</th>
<th>Nominal Voltage (V)</th>
<th>Nominal Capacity (mAh)</th>
<th>Internal Impedance (Ω)</th>
<th>Operating Temperature Range (℃)</th>
<th>Cycle Life (100% D.O.D.) (Time)</th>
<th>Reflowable</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS</td>
<td>MS412FE</td>
<td>4.8 x 1.2</td>
<td>3</td>
<td>1.0</td>
<td>100</td>
<td>−20 to +60</td>
<td>100</td>
<td>−</td>
</tr>
<tr>
<td></td>
<td>MS414GE</td>
<td>4.8 x 1.4</td>
<td>3</td>
<td>2.0</td>
<td>100</td>
<td>−20 to +60</td>
<td>50</td>
<td>−</td>
</tr>
<tr>
<td></td>
<td>MS518SE</td>
<td>5.8 x 1.8</td>
<td>3</td>
<td>3.4</td>
<td>90</td>
<td>−20 to +60</td>
<td>100</td>
<td>−</td>
</tr>
<tr>
<td></td>
<td>MS614SE</td>
<td>6.8 x 1.4</td>
<td>3</td>
<td>3.4</td>
<td>80</td>
<td>−20 to +60</td>
<td>100</td>
<td>−</td>
</tr>
<tr>
<td></td>
<td>MS621FE</td>
<td>6.8 x 2.1</td>
<td>3</td>
<td>5.5</td>
<td>80</td>
<td>−20 to +60</td>
<td>100</td>
<td>−</td>
</tr>
<tr>
<td></td>
<td>MS920SE</td>
<td>9.5 x 2.1</td>
<td>3</td>
<td>11.0</td>
<td>35</td>
<td>−20 to +60</td>
<td>100</td>
<td>−</td>
</tr>
<tr>
<td>MS-T</td>
<td>MS621T</td>
<td>6.8 x 2.1</td>
<td>3</td>
<td>3.0</td>
<td>80</td>
<td>−40 to +85</td>
<td>100</td>
<td>−</td>
</tr>
<tr>
<td></td>
<td>MS920T</td>
<td>9.5 x 2.0</td>
<td>3</td>
<td>6.5</td>
<td>60</td>
<td>−40 to +85</td>
<td>100</td>
<td>−</td>
</tr>
<tr>
<td>TS</td>
<td>TS621E</td>
<td>6.8 x 2.1</td>
<td>1.5</td>
<td>2.5</td>
<td>50</td>
<td>−20 to +60</td>
<td>100</td>
<td>−</td>
</tr>
<tr>
<td></td>
<td>TS920E</td>
<td>9.5 x 2.0</td>
<td>1.5</td>
<td>5.5</td>
<td>20</td>
<td>−20 to +60</td>
<td>50</td>
<td>−</td>
</tr>
<tr>
<td>ML</td>
<td>ML414H</td>
<td>4.8 x 1.4</td>
<td>3</td>
<td>1.0</td>
<td>600</td>
<td>−20 to +60</td>
<td>300†</td>
<td>Yes</td>
</tr>
</tbody>
</table>

*10% D.O.D.

Electric Double Layer Capacitor

<table>
<thead>
<tr>
<th>Series</th>
<th>Type</th>
<th>Size (LxWxH) (mm)</th>
<th>Maximum Use Voltage (V)</th>
<th>Capacitance (mF)</th>
<th>Internal Impedance (Ω)</th>
<th>Temperature Range (℃)</th>
<th>Reflowable</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPH</td>
<td>CPH3225A</td>
<td>3.2 × 2.5 × 0.9</td>
<td>3.3</td>
<td>11.0</td>
<td>160</td>
<td>−20 to +60</td>
<td>Yes</td>
</tr>
<tr>
<td>CPX</td>
<td>CPX3225A</td>
<td>3.2 × 2.5 × 0.9</td>
<td>2.6</td>
<td>7.5</td>
<td>25</td>
<td>−30 to +70</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Silver Oxide Battery (High Dain)

<table>
<thead>
<tr>
<th>Type</th>
<th>Nominal Voltage (V)</th>
<th>Nominal Capacity (mAh)</th>
<th>Size (DxH) (mm)</th>
<th>Weight (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR626W</td>
<td>1.55</td>
<td>28</td>
<td>6.8 x 2.60</td>
<td>0.39</td>
</tr>
<tr>
<td>SR721W</td>
<td>1.55</td>
<td>26</td>
<td>7.9 x 2.10</td>
<td>0.41</td>
</tr>
<tr>
<td>SR726W</td>
<td>1.55</td>
<td>34</td>
<td>7.9 x 2.60</td>
<td>0.52</td>
</tr>
<tr>
<td>SR41W</td>
<td>1.55</td>
<td>45</td>
<td>7.9 x 3.60</td>
<td>0.67</td>
</tr>
<tr>
<td>SR920W</td>
<td>1.55</td>
<td>42</td>
<td>9.5 x 2.05</td>
<td>0.60</td>
</tr>
<tr>
<td>SR927W</td>
<td>1.55</td>
<td>53, 60</td>
<td>9.5 x 2.70</td>
<td>0.75</td>
</tr>
<tr>
<td>SR1120W</td>
<td>1.55</td>
<td>53</td>
<td>11.6 x 2.05</td>
<td>0.93</td>
</tr>
<tr>
<td>SR1130W</td>
<td>1.55</td>
<td>80</td>
<td>11.6 x 3.05</td>
<td>1.29</td>
</tr>
<tr>
<td>SR43W</td>
<td>1.55</td>
<td>120</td>
<td>11.6 x 4.20</td>
<td>1.75</td>
</tr>
<tr>
<td>SR44W</td>
<td>1.55</td>
<td>160</td>
<td>11.6 x 5.40</td>
<td>2.20</td>
</tr>
</tbody>
</table>

Applications

- General digital equipment
- Communication modules
- Wireless sensor network devices
- Health care equipment
- Vehicle devices

Actual sizes

(Unit: mm)

- φ11.6
- φ9.5
- φ7.9
- φ6.8
- φ5.8
- φ4.8
- 3.2×2.5
Example of a Application Circuit

Example of RTC backup circuit

![Circuit Diagram](image-url)

- **RTC used:** CMOS real time clock IC S-35390A, made by ABLIC Inc.
- **Clock operating voltage:** 1.1 to 5.5V, current consumption: 0.25μA
- **Crystal used:** SSP-T7-FL, made by Seiko Instruments Inc.
 - CL = 6.0pF, R1 = 65kΩ max.

* Reverse Current Protection CMOS Voltage Regulator S-13R1, made by ABLIC Inc..
* This circuit diagram is a reference example. See the data sheet of each product before using it.

Example of RTC backup time, using MS414GE / MS614SE

![Graph](image-url)

- **RTC operable voltage:**
 - 0.0 to 3.5V

- **Battery voltage (V):**
 - 0.0 to 3.5V

- **Discharge Time (hours):**
 - 0 to 10,000

- **RTC operable voltage:**
 - MS414GE
 - MS614SE

- **One year (8,760 hours):**

* This graph is a rough indication. The operating time varies depending on the actual service conditions.
Charging Circuit

Charging circuit for MS / ML / TS Lithium Rechargeable Battery

The charging voltage “Vo” must not be higher than 3.3V (MS series) / 3.1V (ML414H) / 3.0V (TS series).

A resistor must be inserted to regulate the charging current, because our rechargeable batteries have a limit for charging current.

Please see the below table for recommended resistor values.

Those values are minimum for each battery type and “Vo” in the charging circuit.

The following table lists the recommended resistance values. For example, MS614SE and Vo 3.3V, the resistor value should be 620 ohm or more.

<table>
<thead>
<tr>
<th>Voltage (V)</th>
<th>MS414GE</th>
<th>MS412FE</th>
<th>MS518SE</th>
<th>MS614SE</th>
<th>MS621L</th>
<th>MS920SE</th>
<th>ML414H</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3</td>
<td>2,000</td>
<td>2,000</td>
<td>1,500</td>
<td>620</td>
<td>620</td>
<td>620</td>
<td>prohibited</td>
</tr>
<tr>
<td>3.2</td>
<td>1,600</td>
<td>1,600</td>
<td>1,000</td>
<td>430</td>
<td>430</td>
<td>430</td>
<td>3,000</td>
</tr>
<tr>
<td>3.1</td>
<td>1,600</td>
<td>1,600</td>
<td>820</td>
<td>330</td>
<td>330</td>
<td>330</td>
<td>3,000</td>
</tr>
<tr>
<td>3.0</td>
<td>1,500</td>
<td>1,500</td>
<td>750</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>3,000</td>
</tr>
<tr>
<td>2.9</td>
<td>1,500</td>
<td>1,500</td>
<td>750</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>3,000</td>
</tr>
<tr>
<td>2.8</td>
<td>1,500</td>
<td>1,500</td>
<td>750</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>3,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Voltage (V)</th>
<th>TS621E</th>
<th>TS920E</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.0</td>
<td>10,000</td>
<td>12,000</td>
</tr>
<tr>
<td>2.9</td>
<td>10,000</td>
<td>11,000</td>
</tr>
<tr>
<td>2.8</td>
<td>9,100</td>
<td>11,000</td>
</tr>
<tr>
<td>2.7</td>
<td>9,100</td>
<td>10,000</td>
</tr>
<tr>
<td>2.6</td>
<td>8,200</td>
<td>10,000</td>
</tr>
<tr>
<td>2.5</td>
<td>7,500</td>
<td>9,100</td>
</tr>
</tbody>
</table>

Discharge capacity depends on charging voltage.
Lower charging voltage may cause lower discharge capacity.
Please see Charge Voltage Characteristics data in respective battery pages.

Charging Circuit for CPH / CPX capacitor

You do not need to insert a resistor to regulate charging current.
Our CPH / CPX capacitor do not have a limit for charging current.
The charging voltage “Vo” must not be higher than 3.3V (CPH3225A) / 2.6V (CPX3225A).
MS (Manganese Silicon) lithium rechargeable batteries, developed by SII, use silicon oxide as the anode and a lithium manganese composite oxide as the cathode. As a result, they offer long cycle life and highly stable overdischarge characteristics.

FEATURES

- **Large discharge capacity**: For high operational voltage range of 3.3V to 2.0V.
- **Long cycle life**: Cycle life of over 100 cycles (over 50 cycles for MS414GE) under charge/discharge conditions of 3.1V to 2.0V (D.O.D.100%).
- **Excellent overdischarge characteristics**: Continued stable capacity characteristics even after the battery is overdischarged down to 0.0V.
- **Operation over a wide temperature range**: Operating temperature range: −20°C to +60°C Consult us for using the battery at a temperature beyond the above temperature range.
- **Battery is not applied to RoHS Directives. Our battery products do not contain any substances restricted by RoHS Directive.**
- **Approved by UL (Underwriters Laboratories Inc.)** UL File No. MH15628

APPLICATIONS

Backup power for Real Time Clock, or memory. E.g. Security Camera, Digital Camera, Action Camera, GPS equipments, Event Data Recorder, Handy Terminal, PC, Smart phone.

MS Lithium Rechargeable Battery 3V Type

Non-Reflowable

<table>
<thead>
<tr>
<th>Type</th>
<th>Nominal Voltage (V)</th>
<th>Charge Voltage (Standard Charge Voltage)(^6) (V)</th>
<th>Nominal Capacity (mAh)(^1)</th>
<th>Internal Impedance (Ω)(^2)</th>
<th>Standard Discharge Current (mA)</th>
<th>Maximum Discharge Current (Continuous) (mA)(^3)</th>
<th>Cycle Life (Time)(^4)</th>
<th>Size (mm)</th>
<th>Weight (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS412FE</td>
<td>3</td>
<td>2.8 to 3.3 (3.1)</td>
<td>1.0</td>
<td>100</td>
<td>0.010</td>
<td>0.10</td>
<td>100</td>
<td>4.8</td>
<td>1.2</td>
</tr>
<tr>
<td>MS414GE</td>
<td>3</td>
<td>2.8 to 3.3 (3.1)</td>
<td>2.0</td>
<td>100</td>
<td>0.010</td>
<td>0.05</td>
<td>50</td>
<td>4.8</td>
<td>1.4</td>
</tr>
<tr>
<td>MS518SE</td>
<td>3</td>
<td>2.8 to 3.3 (3.1)</td>
<td>3.4</td>
<td>90</td>
<td>0.010</td>
<td>0.15</td>
<td>100</td>
<td>6.8</td>
<td>1.8</td>
</tr>
<tr>
<td>MS614SE</td>
<td>3</td>
<td>2.8 to 3.3 (3.1)</td>
<td>3.4</td>
<td>80</td>
<td>0.015</td>
<td>0.25</td>
<td>100</td>
<td>6.8</td>
<td>1.4</td>
</tr>
<tr>
<td>MS621FE</td>
<td>3</td>
<td>2.8 to 3.3 (3.1)</td>
<td>5.5</td>
<td>80</td>
<td>0.015</td>
<td>0.25</td>
<td>100</td>
<td>6.8</td>
<td>2.1</td>
</tr>
<tr>
<td>MS920SE</td>
<td>3</td>
<td>2.8 to 3.3 (3.1)</td>
<td>11.0</td>
<td>35</td>
<td>0.050</td>
<td>0.80</td>
<td>100</td>
<td>9.5</td>
<td>2.1</td>
</tr>
</tbody>
</table>

\(^1\) Nominal capacity: Typical value of discharge capacity between 3.1V and 2.0V

\(^2\) Internal impedance is measured using an AC (Alternating Current) method at the fully charged state.

\(^3\) Maximum discharge current indicates the value of a current for approximately 50% of the nominal capacity.

\(^4\) Cycle Life indicates the times charge/discharge is repeated for approximately 50% of the capacity values in the specification sheet.

\(^5\) 100% and 20% are based on nominal capacity.

\(^6\) A constant voltage charge is recommended, but due to a limit in charge current, it is necessary to insert a resistor to regulate the charge current.

Please see Page 7 for resister value. Contact us for further details.

If a constant current charge is required, contact us for more information.

⚠️ **CAUTION**

MS Lithium Rechargeable Batteries are not reflowable. Please mount them on PCB by hand soldering.
CHARACTERISTICS

DISCHARGE (CHARGE VOLTAGE DEPENDENCE)

MS412FE
- **Charge:** max. 0.025mA/72 hours (CC/CV)
- **Discharge:** 10 μA/c.o.v. = 2.0V (CC)

MS518SE
- **Charge:** max. 0.06mA/72 hours (CC/CV)
- **Discharge:** 10 μA/c.o.v. = 2.0V (CC)

MS614SE
- **Charge:** max. 0.1mA/96 hours (CC/CV)
- **Discharge:** 15 μA/c.o.v. = 2.0V (CC)

MS920SE
- **Charge:** max. 0.2mA/96 hours (CC/CV)
- **Discharge:** 50 μA/c.o.v. = 2.0V (CC)

* c.o.v. … cut off voltage
CHARACTERISTICS

MS621FE

Charge/discharge characteristics

Discharge Current characteristics

Overdischarge Characteristics

Discharge Temperature Characteristics

High Temperature (60°C) Storage Characteristics

Floating Characteristics (60°C, applied voltage 3.1V)

Charge: max. 0.1mA/3.1V, 96 hours (CC/CV)
Discharge: respective current/c.o.v. = 2.0V (CC)

Voltage (V) 0.0 1.0 2.0 3.0 4.0 5.0 6.0
Capacity (mAh)

Charge: max. 0.1mA/3.1V, 96 hours (CC/CV)
Discharge: respective current/c.o.v. = 2.0V (CC)

Voltage (V) 1.5 2.0 2.5 3.0 3.5
Capacity (mAh)

Overdischarge: 18kΩ discharge/respective period
[Capacity measurement conditions]
Charge: max. 0.1mA/3.1V, 96 hours (CC/CV)
Discharge: 15 μA/c.o.v. = 2.0V (CC)

Voltage (V) 1.5 2.0 2.5 3.0 3.5
Capacity (mAh)

Charge: max. 0.1mA/3.1V, 96 hours, RT (CC/CV)
Discharge: respective current/c.o.v. = 2.0V (CC)

Voltage (V) 1.5 2.0 2.5 3.0 3.5
Capacity (mAh)

Charge: max. 0.1mA/3.1V, 96 hours, applied voltage 3.1V
Discharge: respective current/c.o.v. = 2.0V (CC)

Voltage (V) 1.5 2.0 2.5 3.0 3.5
Capacity (mAh)

Storage condition: respective period at 60°C
[Capacity measurement conditions]
Charge: max. 0.1mA/3.1V, 96 hours (CC/CV)
Discharge: 15 μA/c.o.v. = 2.0V (CC)

Voltage (V) 1.5 2.0 2.5 3.0 3.5
Capacity (mAh)

Storage conditions: Each period at 60°C, applied voltage 3.1V
[Capacity measurement conditions]
Charge: max. 0.1mA/3.1V, 96 hours (CC/CV)
Discharge: 15 μA/c.o.v. = 2.0V (CC)

Voltage (V) 1.5 2.0 2.5 3.0 3.5
Capacity (mAh)

*c.o.v…cut off voltage

Seiko Instruments Inc.
DIMENSIONS

- Units: mm
- The shaded parts are tin plated (Sn: 100%).
- Units: mm
- The shaded parts are tin plated (Sn: 100%).
- Units: mm
- The shaded parts are tin plated (Sn: 100%).
MS621T / MS920T

“MS621T” and “MS920T” have improved both higher and lower temperature characteristics while leaving features of the conventional MS rechargeable batteries. They offer a wider temperature range from -40°C to 85°C.

FEATURES
- Operation over a wide temperature range: Operating temperature range: -40°C to +85°C
- High reliability: At least 90% of retention capacity after exposure to 85°C for 100 days.
- Long cycle life: 100 cycles (D.O.D.100%)
- Battery is not applied to RoHS Directives. Our battery products do not contain any substances restricted by RoHS Directive.
- Approved by UL (Underwriters Laboratories Inc.) UL File No. MH15628

APPLICATIONS
Backup power for Real Time Clock, or memory. E.g. Automotive equipment, Security cameras, electronic power, gas and water meters, electronic devices where PCB temperature increases.

CHARACTERISTICS
Charge Voltage Characteristics

MS621T

<table>
<thead>
<tr>
<th>Type</th>
<th>Nominal Voltage (V)</th>
<th>Charge Voltage (Standard Charge Voltage) (V)</th>
<th>Nominal Capacity *1 (mAh)</th>
<th>Internal Impedance *2 (Ω)</th>
<th>Operating Temperature Range</th>
<th>Cycle Life (Time)</th>
<th>Size (mm)</th>
<th>Weight (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS621T</td>
<td>3</td>
<td>2.8~3.3(3.1)</td>
<td>3.0</td>
<td>80</td>
<td>-40°C to +85°C</td>
<td>100</td>
<td>6.8</td>
<td>2.1</td>
</tr>
<tr>
<td>MS920T</td>
<td>3</td>
<td>2.8~3.3(3.1)</td>
<td>6.5</td>
<td>60</td>
<td>-40°C to +85°C</td>
<td>100</td>
<td>9.5</td>
<td>2.0</td>
</tr>
</tbody>
</table>

*1. Nominal capacity: Typical value of discharge capacity between 3.1V and 2.0V.
*2. A constant voltage charge is recommended, but due to a limit in charge current, it is necessary to insert a resistor to regulate the charge current.

Please see Page 7 for resistor value. Contact us for further details.

If a constant current charge is required, contact us for more information.

CAUTION
MS Lithium Rechargeable Batteries are not reflowable. Please mount them on PCB by hand soldering.
CHARACTERISTICS

Discharge characteristics (-40°C capacity)

MS621T

- Charge Discharge condition
 - Charge: 3.1V, 96 hours, max. 100μA, RT
 - Discharge: 15μA, c.o.v.=2.0V, RT

- **MS920T**

 - Charge Discharge condition
 - Charge: 3.1V, 72 hours, max. 200μA, RT
 - Discharge: 25μA, c.o.v.=2.0V, RT

High temperature characteristics (85°C storage)

Storage period - Capacity retention ratio

MS-T series's capacity retention ratio after High temperature storage were greatly improved.

* 85°C use of Conventional MS series is not guaranteed.

Charge Characteristics (MS920T)

Charge time - Discharge capacity

Both the MS621T and MS920T can reach 80% of capacity after 12 hours of charging.

*MS920T: Calculated given a 100% charge of 6.5 mAh nominal capacity.
TS Lithium Rechargeable Battery 1.5V Type

TS621E / TS920E

TS lithium rechargeable batteries are high capacity 1.5V type non-reflowable rechargeable batteries that provide sufficient discharge capacity with a charge voltage of less than 2.0V.

FEATURES
- Low-voltage rechargeable
- High capacity
- Long cycle life: at least 1000 cycles (20% D.O.D.)
- Battery is not applied to RoHS Directives. Our battery products do not contain any substances restricted by RoHS Directive.
- Approved by UL (Underwriters Laboratories Inc.) UL File No. MH15628 (TS621E only)

APPLICATIONS
- Solar Watch (as main battery)
- Small mobile equipment (backup power supply for Real Time Clock)
 - E.g. Security Camera, Digital Camera, Action Camera, GPS equipments, Event Data Recorder, Handy Terminal, PC, Smart phone.

<table>
<thead>
<tr>
<th>Type</th>
<th>Nominal Voltage (V)</th>
<th>Charge Voltage*4 (V)</th>
<th>Nominal Capacity (Voltage Range V)*1 (mAh)</th>
<th>Internal Impedance*2 (Ω)</th>
<th>Standard Discharge Current (mA)</th>
<th>Cycle Life*3 (Time)</th>
<th>Diameter (mm)</th>
<th>Height (mm)</th>
<th>Weight (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TS621E</td>
<td>1.5</td>
<td>1.5 to 3.0</td>
<td>1.3 (1.5 to 1.0) 2.5 (2.3 to 1.0)</td>
<td>50</td>
<td>0.025</td>
<td>1000 (20% D.O.D.)</td>
<td>6.8</td>
<td>2.1</td>
<td>0.23</td>
</tr>
<tr>
<td>TS920E</td>
<td>1.5</td>
<td>1.5 to 3.0</td>
<td>5.5 (2.3 to 1.0)</td>
<td>20</td>
<td>0.05</td>
<td>1000 (20% D.O.D.)</td>
<td>9.5</td>
<td>2.0</td>
<td>0.46</td>
</tr>
</tbody>
</table>

*1. The discharge capacity of each voltage range (Room Temperature).
*2. Value measured using an AC (Alternating Current) method in the fully charged state.
*3. Counts of charge and discharge repetition that maintains about 50% of the minimum guaranteed capacity
*4. A constant voltage charge is recommended, but due to a limit in the charge current, it is necessary to insert a resistor to regulate the charge current.

Please see Page 7 for resistor value. Contact us for further details.

If a constant current charge is required, please contact us for more information.

⚠️ **CAUTION**

TS Lithium Rechargeable Batteries are not reflowable. Please mount them on PCB by hand soldering.

CHARACTERISTICS

Charge/discharge characteristics

TS621E

TS920E
CHARACTERISTICS

Charge Voltage Characteristics

<table>
<thead>
<tr>
<th>TS621E</th>
<th>TS920E</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Charge: max. 200μA/respective voltage/48 hours (CC/CV)
- Discharge: 25μA/c.o.v.= 1.0V (CC)
- Storage Condition: 60°C/2.3V applied
- Capacity retention ratio (%)
- [Capacity measurement conditions]

High Temperature Storage Characteristics

<table>
<thead>
<tr>
<th>TS920E</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

- Storage Condition: 60°C/2.3V applied
- Charge: max. 200μA/2.3V/72 hours (CC/CV)
- Discharge: 50μA/c.o.v.= 1.0V (CC)
- [Capacity measurement conditions]

Float-Charge Characteristics

<table>
<thead>
<tr>
<th>TS920E</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

- Storage Condition: 60°C/2.3V applied
- Charge: max. 200μA/2.3V/72 hours (CC/CV)
- Discharge: 50μA/c.o.v.= 1.0V (CC)
- [Capacity measurement conditions]

DIMENSIONS

TS621E FL11E

- Units: mm
- The shaded parts are tin plated (Sn: 100%).

TS920E FL27E
ML414H is environment-friendly rechargeable battery that can be reflowed with lead-free solder.

FEATURES

- **Reflowable:** Superior heat resistance allows reflow soldering
- **Large Capacity:** 1.0mAh (typical) (3.1V charge - 2.0V Cut-off)
- **Operation over a wide temperature range:** Operating temperature range: −20°C to +60°C Consult us for using the battery at a temperature beyond the above temperature range.
- **Battery is not applied to RoHS Directives. Our battery products do not contain any substances restricted by RoHS Directive.**
- **Approved by UL (Underwriters Laboratories Inc.)**
 - UL File No. MH15628

APPLICATIONS

Backup power for Real Time Clock, or memory.
- E.g. Security Camera, Digital Camera, Action Camera, GPS equipments, Event Data Recorder, Handy Terminal, PC, Smart phone.

DIMENSIONS

ML414H IV01E

- Units: mm
- The shaded parts are tin plated (Sn: 100%).

CHARACTERISTICS

Charge/discharge characteristics

- **ML414H**
 - Nominal Voltage: 3.0V
 - Charge Voltage:³ (V): 2.7 to 3.1
 - Nominal Capacity: 1.0mAh (typical) (3.1V charge - 2.0V Cut-off)
 - Internal Impedance:¹ (Ω): 600
 - Standard Discharge Current: 0.005mA
 - Cycle Life:² (Time): 300 (10% D.O.D.)
 - Diameter: 4.8mm
 - Height: 1.4mm
 - Weight: 0.07g

¹ Value measured using an AC (Alternating Current) method in the fully charged state.

² Counts of charge and discharge repetition that maintains about 50% of the minimum guaranteed capacity

³ A constant voltage charge is recommended, but due to a limit in the charge current, it is necessary to insert a resistor to regulate the charge current.

Please see Page 7 for resistor value. Contact us for further details.

If a constant current charge is required, please contact us for more information.

CAUTION

Max. charging voltage of ML414H is 3.1V.
CPH3225A is thinnest and smallest chip-type electric double layer capacitor. The unique ceramic packaging with superior air-tightness is used. As the result, it offers leakage resistance and humidity resistance. Also, by optimizing its materials, a 1 minute rapid charge stores approximately 85% of full capacity. Its heat-resistant design allows for Pb-free reflowable SMT board attachment.

FEATURES
- Small and thin size
- Excellent leakage resistance and humidity resistance
- Reflowable:
 - Superior heat resistance allows reflow soldering
- Long cycle Life:
 - At least 10,000 times of charge/discharge
- Simple Charging circuit (constant voltage charging)
- Wide operating temperature range:
 - Operating temperature range: -20°C to +60°C
 - For use the battery at a temperature out of the above temperature range, please consult us.
- RoHS Compliant

APPLICATIONS
Backup Power for various devices.
Super small size power supply.
E.g. Smartphone, Tablet, Cellphone, Personal computer, IC card, Game machine, Handy terminal, Video camera, various kinds of small appliance, etc.

<table>
<thead>
<tr>
<th>Type</th>
<th>Maximum Use Voltage (V)</th>
<th>Nominal Capacity (Voltage Range) Capacitance</th>
<th>Internal Impedance (Ω)</th>
<th>Size (L x W x H) (mm)</th>
<th>Weight (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPH3225A</td>
<td>3.3</td>
<td>4.6µAh (3.3 to 1.8V) 11mF</td>
<td>160</td>
<td>3.2x2.5x0.9</td>
<td>0.025</td>
</tr>
</tbody>
</table>

* Value measured using AC (Alternating Current) method at the discharged state.

CAUTION

1. Prohibition ripple charging
 - A ripple (high frequency fluctuation of voltage) in the charge voltage extremely lowers the capacitor performance. Be sure to charge capacitors with a stable voltage.

2. Charge voltage
 - The age deterioration of the capacitor depends on the charge voltage. The age deterioration is accelerated as charge voltage goes higher.

3. Usage environment
 - Aging degradation of the capacitor varies depending on the usage environment (temperature and humidity). Contact us for further details.

CHARACTERISTICS

- Small and thin size
- Excellent leakage resistance and humidity resistance
- Reflowable: Superior heat resistance allows reflow soldering
- Long cycle Life: At least 10,000 times of charge/discharge
- Simple Charging circuit (constant voltage charging)
- Wide operating temperature range: Operating temperature range: -20°C to +60°C
 - For use the battery at a temperature out of the above temperature range, please consult us.
- RoHS Compliant

* c.o.v. = cut off voltage
CPX3225A

Chip-type Electric Double Layer Capacitor (EDLC), CPX series offers low internal impedance and very small leak current. CPX Capacitors allow discharge current up to several tens of mAs, and super rapid charging by small electromotive force.

FEATURES

• Large discharge current and super rapid charging achieved by low internal impedance
• Small leak current
 CPX capacitor allows sufficient charging with several micro watts of energy harvesting power source.
• Long life span, high reliability
 Superior air-tight ceramic package reduces storage deterioration in high temperature / high humidity environments, assuring long term reliability.
• Reflowable, small and thin
 The chip-type design makes it possible to reflow.

APPLICATIONS

• Power backup of instantaneous battery detachment
• Power assist for main battery
• Electric storage device for energy harvesting
• Peak load leveling of primary battery
 E.g. Handy terminals, Payment terminals, Wireless sensor network devices, NFC-enabled mobile devices, Battery powered medical devices, etc.

<table>
<thead>
<tr>
<th>Type</th>
<th>Maximum Use Voltage (V)</th>
<th>Capacitance (mF)</th>
<th>Internal Impedance (ESR) * (Ω)</th>
<th>Size (LxWxH) (mm)</th>
<th>Operating Temperature Range</th>
<th>Weight (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPX3225A752D</td>
<td>2.6</td>
<td>7.5</td>
<td>25</td>
<td>3.2x2.5x0.9</td>
<td>-30℃ to +70℃</td>
<td>0.024</td>
</tr>
</tbody>
</table>

* Value measured using AC (Alternating Current) method at the discharged state.

CHARACTERISTICS

Pulsed Discharge Curve (20mA×0.1sec)
REFLOW SOLDERING CONDITIONS

Reflow Profile Example

The times of repeated reflow soldering must be two times or less. The Temperature must be measured at top of the cell.

Max. 260°C (within 5 seconds)

Recommended Reflow Conditions

The peak temperature is within five seconds.

DIMENSIONS

CPH3225A / CPX3225A

- Units: mm
SEIZAIKEN, Mercury Free Silver Oxide Batteries by SII, has grown with the history of quartz watches. Silver Oxide Batteries have high density of energy per volume and are able to supply stable voltage for a long time. SEIZAIKEN Batteries are suitable to power BLE(Bluetooth Low Energy), wearable devices, and information devices.

FEATURES
- Stable power voltage
- Large energy density
- Able to discharge mA level of pulse current
- Lineup of small diameter (11.6mm and less)

APPLICATIONS
Devices that require high discharge pulsing such as stylus pen for tablets, disposable devices, thermometers, etc.

CHARACTERISTICS

Comparisons at 10mA for 1sec Pulse Discharge and c.o.v. 2.0V

<table>
<thead>
<tr>
<th>Type</th>
<th>Nominal Voltage (V)</th>
<th>Nominal Capacity (mAh)</th>
<th>Discharge Level</th>
<th>Dimensions (mm)</th>
<th>Weight (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Diameter</td>
<td>Height</td>
</tr>
<tr>
<td>SR**SW</td>
<td>1.55</td>
<td>5.5 to 160</td>
<td>Low current</td>
<td>4.8 to 11.6</td>
<td>1.25 to 5.40</td>
</tr>
<tr>
<td>SR**W</td>
<td>1.55</td>
<td>26 to 160</td>
<td>High current</td>
<td>6.8 to 11.6</td>
<td>2.05 to 5.40</td>
</tr>
</tbody>
</table>

Discharge Characteristics

SR920W Discharge characteristics

- Load: 15kΩ / 25°C

CR1025

- Test result of pulse discharge CR1025 25°C

- 2,031 times of Pulse

Mercury Free Silver Oxide Battery : SEIZAIKEN

Non-Refowable
Low Drain Battery Lineup

<table>
<thead>
<tr>
<th>Type</th>
<th>Characteristics (RT)</th>
<th>Dimensions</th>
<th>Weight(g)</th>
<th>C.C.V.</th>
<th>Ref. No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nominal Voltage (V)</td>
<td>Standard Capacity (mAh)</td>
<td>Standard Discharge Current (μA)</td>
<td>Diameter (mm)</td>
<td>Height (mm)</td>
</tr>
<tr>
<td>SR416SW</td>
<td>1.55</td>
<td>7.5</td>
<td>10</td>
<td>4.8</td>
<td>1.65</td>
</tr>
<tr>
<td>SR421SW</td>
<td>1.55</td>
<td>12</td>
<td>20</td>
<td>4.8</td>
<td>2.15</td>
</tr>
<tr>
<td>SR512SW</td>
<td>1.55</td>
<td>5.5</td>
<td>5</td>
<td>5.8</td>
<td>1.25</td>
</tr>
<tr>
<td>SR516SW</td>
<td>1.55</td>
<td>12.5</td>
<td>20</td>
<td>5.8</td>
<td>1.65</td>
</tr>
<tr>
<td>SR521SW</td>
<td>1.55</td>
<td>13</td>
<td>20</td>
<td>5.8</td>
<td>2.15</td>
</tr>
<tr>
<td>SR527SW</td>
<td>1.55</td>
<td>22</td>
<td>40</td>
<td>5.8</td>
<td>2.70</td>
</tr>
<tr>
<td>SR616SW</td>
<td>1.55</td>
<td>16</td>
<td>20</td>
<td>6.8</td>
<td>1.65</td>
</tr>
<tr>
<td>SR621SW</td>
<td>1.55</td>
<td>21</td>
<td>30</td>
<td>6.8</td>
<td>2.15</td>
</tr>
<tr>
<td>SR626SW</td>
<td>1.55</td>
<td>24</td>
<td>30</td>
<td>6.8</td>
<td>2.60</td>
</tr>
<tr>
<td>SR712SW</td>
<td>1.55</td>
<td>10</td>
<td>10</td>
<td>7.9</td>
<td>1.25</td>
</tr>
<tr>
<td>SR714SW</td>
<td>1.55</td>
<td>15</td>
<td>20</td>
<td>7.9</td>
<td>1.45</td>
</tr>
<tr>
<td>SR716SW</td>
<td>1.55</td>
<td>21</td>
<td>30</td>
<td>7.9</td>
<td>1.65</td>
</tr>
<tr>
<td>SR721SW</td>
<td>1.55</td>
<td>23</td>
<td>40</td>
<td>7.9</td>
<td>2.10</td>
</tr>
<tr>
<td>SR726SW</td>
<td>1.55</td>
<td>34</td>
<td>40</td>
<td>7.9</td>
<td>2.60</td>
</tr>
<tr>
<td>SR731SW</td>
<td>1.55</td>
<td>36</td>
<td>50</td>
<td>7.9</td>
<td>3.10</td>
</tr>
<tr>
<td>SR41SW</td>
<td>1.55</td>
<td>45</td>
<td>50</td>
<td>7.9</td>
<td>3.60</td>
</tr>
<tr>
<td>SR912SW</td>
<td>1.55</td>
<td>15</td>
<td>20</td>
<td>9.5</td>
<td>1.25</td>
</tr>
<tr>
<td>SR916SW</td>
<td>1.55</td>
<td>27</td>
<td>50</td>
<td>9.5</td>
<td>1.65</td>
</tr>
<tr>
<td>SR920SW</td>
<td>1.55</td>
<td>35</td>
<td>50</td>
<td>9.5</td>
<td>2.05</td>
</tr>
<tr>
<td>SR927SW</td>
<td>1.55</td>
<td>53</td>
<td>60</td>
<td>9.5</td>
<td>2.70</td>
</tr>
<tr>
<td>SR936SW</td>
<td>1.55</td>
<td>85</td>
<td>100</td>
<td>9.5</td>
<td>3.60</td>
</tr>
<tr>
<td>SR110SW</td>
<td>1.55</td>
<td>53</td>
<td>80</td>
<td>11.6</td>
<td>2.05</td>
</tr>
<tr>
<td>SR1130SW</td>
<td>1.55</td>
<td>80</td>
<td>100</td>
<td>11.6</td>
<td>3.05</td>
</tr>
<tr>
<td>SR43SW</td>
<td>1.55</td>
<td>120</td>
<td>150</td>
<td>11.6</td>
<td>4.20</td>
</tr>
<tr>
<td>SR44SW</td>
<td>1.55</td>
<td>160</td>
<td>250</td>
<td>11.6</td>
<td>5.40</td>
</tr>
</tbody>
</table>

*1 The standard capacity is calculated by the measurement result of discharging time with the standard discharge current to the voltage 1.2V.

*2 C.C.V.: Closed Circuit Voltage / Low Drain 2kΩ 7.8msec Pulse

High Drain Battery Lineup

<table>
<thead>
<tr>
<th>Type</th>
<th>Characteristics (RT)</th>
<th>Dimensions</th>
<th>Weight(g)</th>
<th>C.C.V.</th>
<th>Ref. No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nominal Voltage (V)</td>
<td>Standard Capacity (mAh)</td>
<td>Standard Discharge Current (μA)</td>
<td>Diameter (mm)</td>
<td>Height (mm)</td>
</tr>
<tr>
<td>SR626W</td>
<td>1.55</td>
<td>28</td>
<td>50</td>
<td>6.8</td>
<td>2.60</td>
</tr>
<tr>
<td>SR721W</td>
<td>1.55</td>
<td>26</td>
<td>50</td>
<td>7.9</td>
<td>2.10</td>
</tr>
<tr>
<td>SR726W</td>
<td>1.55</td>
<td>34</td>
<td>50</td>
<td>7.9</td>
<td>2.60</td>
</tr>
<tr>
<td>SR41W</td>
<td>1.55</td>
<td>45</td>
<td>80</td>
<td>7.9</td>
<td>3.60</td>
</tr>
<tr>
<td>SR920W</td>
<td>1.55</td>
<td>42</td>
<td>80</td>
<td>9.5</td>
<td>2.05</td>
</tr>
<tr>
<td>SR927W</td>
<td>1.55</td>
<td>53</td>
<td>90</td>
<td>9.5</td>
<td>2.70</td>
</tr>
<tr>
<td>SR110W</td>
<td>1.55</td>
<td>53</td>
<td>90</td>
<td>11.6</td>
<td>2.05</td>
</tr>
<tr>
<td>SR1130W</td>
<td>1.55</td>
<td>80</td>
<td>130</td>
<td>11.6</td>
<td>3.05</td>
</tr>
<tr>
<td>SR43W</td>
<td>1.55</td>
<td>120</td>
<td>220</td>
<td>11.6</td>
<td>4.20</td>
</tr>
<tr>
<td>SR44W</td>
<td>1.55</td>
<td>160</td>
<td>250</td>
<td>11.6</td>
<td>5.40</td>
</tr>
</tbody>
</table>

*1 The standard capacity is calculated by the measurement result of discharging time with the standard discharge current to the voltage 1.2V.

*2 C.C.V.: Closed Circuit Voltage / High Drain 2000 5sec DC
CHECK SHEET

If you are considering the purchase of one or more of our microbatteries or capacitors, please complete this check sheet and send it to us. We will let you know which products will be optimum for you to use.

1. Products of interest
 - □ Rechargeable Battery
 - □ Capacitor (CPH3225A)
 - □ Capacitor (CPX3225A)
 - □ Silver Oxide Battery

2. Application circuits

3. Applications
 - □ As a power supply backup.
 - □ As a main power supply.
 - If for backup power supply, load device is: □ RTC (Realtime clock) □ Other

4. Current consumption of load device
 - ___μA / mA

5. Minimum operating voltage of load device
 - ___V

6. Required discharge time
 - ____second / ms / μs (If for pulsed discharging)
 - ____minute / hour / day / month (If for loads such as main power applications, RTC backup power, etc.)

7. Usage environment temperature

8. Mounting
 - □ Reflow mounting required
 - □ Reflow mounting not required

9. Service life of application

10. Desired charge voltage and charge time for rechargeable batteries and capacitors
 - ____V, ____hour
Environmental Activities at Micro-Energy Division

Environment & Quality Policy
Seiko Instruments Inc., Micro-Energy Division is located in Ayashi, a city with beautiful nature, in Miyagi Prefecture. Our aim is to provide customer satisfaction and harmony with the environment through all our products, from Micro battery to other electronic products, and sales activities.
1. We adhere firmly to laws, regulations and customers' specified requirements.
2. We aim to prevent pollution, to reduce CO₂, and to conserve biodiversity.
3. We set goals, take actions, conduct regular reviews, and improve the system and performance continuously.
4. We contribute to the society by supporting green procurement, developing green products, and promoting green life activity.
5. We adhere to regulations and recommendations regarding Chemical substance content in our products and will promote reduction and replacement.
6. We vigorously educate ourselves and try to engage voluntarily in green life activity.

Based on the above policy, the following six environmental approaches are now being implemented throughout Micro-Energy Division.

1. Enrich the line up of Eco-Products
 • We introduced the SII Green Product Label System which is equivalent to the ISO 14021 Type II environmental label. At the end of FY2006, 100% of our products are certified as SII Green Products. In addition, 42 products are certified as SII “High Grade” Green Products.

2. Reduction of Greenhouse Gas
 • We practice various CO₂ reduction measures like using Eco-machinery. Since 1997, we have successfully reduced a total of 62,800 tons of CO₂. We believe our efforts contribute to the prevention of global warming.

3. 3R Promotion Activity
 • We have promoted the “reduce and reuse” activities and also promoted recycling at the end of the production process. With these activities, we achieved “Zero-emission” in 2004. We have reduced the non-recyclable wastes to less than 1 ton - less than 1% of our 1997 results.

4. Biodiversity Conservation
 • We endeavor to deepen our understanding on the relevancy between biodiversity and our business activities, and to contribute to the conservation of biodiversity by participating local community activities.

5. Green Purchasing
 • We adhere to a green purchasing campaign through the purchase of ingredients, manufacturing materials, and other necessary products, whenever appropriate.

6. Green Life
 • With the participation of all of Micro-Energy Division members, we deploy a clean-up and beautification campaign in all areas surrounding our factory once a year. In addition, we participate in the clean up activity at Hirose River once a year.

7. Conflict Minerals
 • Recognizing the international importance of conflict minerals issue, we prohibit the use of such minerals.
SII Lithium rechargeable batteries (MS, ML, TS) contain flammable organic solvents. For your safety, please follow following prohibitions.

1. Do not charge by high current or high voltage.
 Doing so may generate gas inside the battery, resulting swelling, fire, heat generation or bursting.
2. Do not heat, disassemble nor dispose of in fire
 Doing so damages the insulation materials and may cause fire, heat generation, leakage or bursting.
3. Do not solder directly to the battery
 If soldering is performed directly to the battery, the battery is heated up, consequently causing leakage, explosion or fire due to overheating from internal short-circuit.
4. Do not short.
 If the (+) and (-) come into contact with metal materials, short-circuit or over discharge of the battery on some equipment and it may induce overheating, explosion or fire.
5. Keep batteries out of children’s reach.
 It is dangerous that children swallow the battery. When you design mechanical hardware around the battery, please fix the battery firmly in order to prevent children from removing it. When you store the batteries, please keep the batteries out of children’s reach. If a battery is swallowed, consult a physician immediately.
6. Do not reverse placement of (+) and (-)
 If the (+)and(-) side of the battery is reverse inserted, it may cause a short-circuit or over discharge of the battery on some equipment and it may induce overheating, explosion or fire.
7. Do not weld terminals to the battery
 The heat by welding may cause fire, heat generation, leakage or bursting. We weld standard terminals under strictly controlled conditions. If you need to weld terminals to the battery, please consult us in advance.
8. Do not discharge by force
 If the battery is discharged by direct connection to an external power supply etc., voltage of the battery will decline lower than 0 volts (electrical reversal) and will cause the battery case to expand, overheat, explode or burn.
9. In case of leakage or a strange smell, keep away from fire to prevent ignition of any leaked electrolyte.
10. In case of disposal, insulate between (+) and (-) of battery by an insulating material.
 Jumbling batteries or with other metal materials cause short-circuit. As a result, fire, heat generation, leakage or bursting may occur.

Do not jumble batteries
Short-circuiting

Example Example of insulation Insulating tape

Contacting between batteries cause short-circuiting such as above diagram.

1. If leaked liquid gets in the eyes, wash them with clean water and consult a physician immediately.
2. Do not use new and used batteries together. Do not use different types of batteries together.
 It may cause fire, heat generation, leakage or bursting.
3. If you connect two or more batteries in series or parallel, please consult us in advance.
 It may cause bursting or fire due to unbalanced load or voltage.
4. Do not use nor leave the batteries in direct sunlight nor in high-temperature areas.
 It may cause fire, heat generation, leakage or bursting.

1. Pay attention to mat or sheet for ESD
 Battery with tabs or battery on PCB may short circuit on the mat for ESD. As a result, the voltage of the cell is reduced.
2. Pay attention to soldering by tips
 Do not touch the battery by soldering iron tips directly.
 Keep any high temperature process away from battery.

For prevention of performance deterioration of battery

1. Pay attention to mat or sheet for ESD
 Battery with tabs or battery on PCB may short circuit on the mat for ESD. As a result, the voltage of the cell is reduced.
2. Pay attention to soldering by tips
 Do not touch the battery by soldering iron tips directly.
 Keep any high temperature process away from battery.
3. Pay attention to material of jig for pick and place
 Use non-conductive material of jig for pick and place of batteries, for short-circuit protect. If short-circuit of battery occurs, the voltage of battery drops down quickly but raises gradually.
4. Pay attention to washing and drying
 Some detergent or high temperature drying may cause deteriorate of battery.
 If you need to wash batteries, consult us.

International Transportation and Disposal

International Air / Marine / Ground Transportation

Regarding the transport of Lithium battery, organizations like IATA, ICAO, IMO, DOT have determined transport regulations, based on the United Nations Regulations. Regarding air transport, SII Lithium rechargeable batteries can be transported being not subject to the provisions of dangerous goods, if the transportations meet the following requirements. Please contact us for more details.

(a) **<Strong Packaging>** Batteries are separated each other, and are packed in strong packaging so as to prevent short-circuit.
(b) **<Caution Label>** Lithium battery handling label (IATA prescribed), indicating that the packages contain Lithium batteries, that the packages must be handled with care, and that special procedures should be followed in the event that the package is damaged, and a telephone number for additional information, must be put on each package.
(c) **<CAO Label>** “CARGO AIRCRAFT ONLY” Label must be put on each package.
(d) **<Not Restricted Declaration>** Each shipment must be accompanied with a document indicating that the packages contain Lithium batteries, that the packages must be handled with care, that it must not be transported by passenger flight, and that special procedures should be followed in the event that the package is damaged, and a telephone number for additional information.
(e) **<Package Drop Test>** Each package is capable of withstanding a 1.2m drop test in any orientation without damage to batteries contained.
(f) **<Weight Limit>** Net weight of one package may not exceed 2.5 kg.
(g) **<One carton per one shipment>** The shipment must be “one carton per one shipment” to be shipped as “Non-dangerous goods”.
 “One shipment” means one airway bill = one invoice.

Transport as dangerous goods

When you transport SII’s Lithium rechargeable batteries by “more than one carton per one shipment”, you will have to arrange it as “Dangerous goods”. It requires special procedures, like “Class 9 dangerous goods Label” on carton, and “dangerous goods declaration”.

Disposal

Recently environmental protection regulations have increased and battery disposals are regulated globally. Such regulations are different in each country, state, and municipality. Please consult your local authorities regarding the specific regulations in your area.
Micro-Energy Division capacitors (CPH, CPX) contain flammable organic solvents. For your safety, please follow the following precautions.

WARNING!

- Do not charge by higher current or higher voltage than specified. Doing so may generate gas inside the capacitor, resulting in swelling, fire, heat generation or bursting.
- Do not reverse placement of (+) and (-) SiI capacitors have polarity. If the (+) and (-) side of the capacitor is reverse inserted, it may cause short-circuit or over discharge of the capacitor on some equipment and it may induce overheating, explosion or fire.
- Keep capacitors out of children’s reach. It is dangerous that children swallow the capacitor. When you design mechanical hardware around the capacitor, please fix the capacitor firmly in order to prevent children from removing it.
- Do not heat, disassemble nor dispose of in fire Doing so damages the insulation materials and may cause fire, heat generation, leakage or bursting.
- Do not discharge by force If the capacitor is discharged by direct connection to an external power supply etc., voltage of the capacitor will decline lower than 0 volts (electrical reversal) and will cause the capacitor case to expand, overheat, leak, explode or burn.
- In case of leakage or a strange smell, keep away from fire to prevent ignition of any leaked electrolyte.

CAUTION!

- If leaked liquid gets in the eyes, wash them with clean water and consult a physician immediately.
- Do not use nor leave the capacitors in direct sunlight nor in high-temperature areas. It may cause fire, heat generation, leakage or bursting.
- Do not make the capacitor airtight by sealing it with adhesive agent or coating agent. It may cause short-circuit because of generated and accumulated electrolyte gas.
- Do not use new and used capacitors together. Do not use different types of capacitors together. It may cause fire, heat generation, leakage or bursting.
- If you connect two or more capacitors in series or parallel, please consult us in advance. It may cause bursting or fire due to unbalanced load or voltage.
- Keep capacitors away from direct sunlight, high temperature and humidity. It may cause heat generation or performance deterioration.

For using SiI Silver Oxide batteries, please follow the following precautions.

WARNING!

- Do not charge by higher current or higher voltage than specified. When you store the capacitors, please keep the capacitors out of children’s reach. If a capacitor is swallowed, consult a physician immediately.
- Do not heat, disassemble nor dispose of in fire Doing so damages the insulation materials and may cause fire, heat generation, leakage or bursting.
- Do not discharge by force If the capacitor is discharged by direct connection to an external power supply etc., voltage of the capacitor will decline lower than 0 volts (electrical reversal) and will cause the capacitor case to expand, overheat, leak, explode or burn.
- In case of leakage or a strange smell, keep away from fire to prevent ignition of any leaked electrolyte.

CAUTION!

- Make sure to insert batteries without having (+) and (-) come in contact with metal parts of equipment.
- Read the equipment instruction manual and precautions carefully before using. Some usage or types of equipment do not suit the specifications or performance of these batteries.
- Remove batteries from the equipment, if finished using. Do not leave batteries connecting with equipment after using.
- In case of disposal, insulate between (+) and (-) of battery by an insulating material.

IMPORTANT

1. The information herein is subject to change without notice.
2. Neither reproduction, duplication nor unauthorized use of this catalog in whole or part is allowed without the prior written approval of Seiko Instruments Inc.
3. The colors of the products reproduced herein (“Products”) may be different from the actual colors. Check colors on actual products before using the Products.
4. Circuits and respective application methods described herein are for reference only. Seiko Instruments Inc. shall not be liable for any damages or losses resulting from any claim by third parties that any Products or application methods described herein infringe any right intellectual property right. All intellectual property rights with respect to the Products belong exclusively to Seiko Instruments Inc.
5. When Products include Strategic Products (or Services) stipulated in the Foreign Exchange and Trade Control Law, they shall not be exported without permission of governmental authorities.
6. The Products are designed for consumer equipment and cannot be used as part of any device or equipment which influences the human body or requires a significantly high reliability, such as physical exercise equipment, medical equipment, disaster prevention equipment, gas related equipment, vehicles, aircraft and equipment mounted on vehicles without our prior express written consent.

Seiko Instruments Inc. does not grant users of the Products any right or license to the Products hereunder.

All data, dimensions, characteristics and values shown in this catalogue are for reference only. Please contact your local Seiko Instruments Representative for current detailed specifications.

Seiko Instruments Inc. 27
Micro-Energy Division who manufactures the products described in this catalog holds the ISO 9001 quality management system certificate, and the ISO 14001 environmental management systems certificate.

Seiko Instruments Inc.
Electronic Components Sales Head Office
1-8, Nakase, Mihamaku, Chiba-shi, Chiba 261-8507, Japan
Telephone: +81-43-211-1735 Facsimile: +81-43-211-8034

Seiko Instruments (H.K.) Ltd.
4-5/F, Wyler Centre 2, 200 Tai Lin Pai Rd.,
Kwai Chung, N.T., Kowloon, Hong Kong
Telephone: +852-2494-5111
Facsimile: +852-2480-5479
Email: sales@siih.com.hk
http://www.siih.com.hk

Seiko Instruments (H.K.) Ltd.
- Shenzhen Rep. Office
Room 2212-15, Office Tower, Shun Hing
Square Di Wang Commercial Centre,
5002 Shen Nan Dong Road, Shenzhen,
518008, China
Telephone: +86-755-8246-2680
Facsimile: +86-755-8246-5140

Seiko Instruments (Shanghai) Inc.
Room 2701-2703, 27th Floor,
Shanghai Plaza
138 Mid Huaihai Rd.,
Shanghai 200021, China
Telephone: +86-21-6375-6611
Facsimile: +86-21-6375-6727

Seiko Instruments Taiwan Inc.
12F, No.101, Sec.2, Nanking E. Rd.,
Taipei 104, Taiwan, R.O.C.
Telephone: +886-2-2563-5001
Facsimile: +886-2-2563-5580
Email: public@sii.co.jp
http://www.sii.com.tw

Seiko Instruments (H.K.) Ltd.
Sierenstrasse 9
D-63263 Neu Isenburg, Germany
Telephone: +49-6102-297-0
Facsimile: +49-6102-297-50100
Email: info@seiiko-instruments.de
http://www.seiko-instruments.de

Seiko Instruments U.S.A., Inc.
21221 S. Western Ave., Suite 250,
Torrance, CA 90501, U.S.A.
Telephone: +1-310-517-7802
Facsimile: +1-310-517-7792
Email: info@seikoinstruments.com
http://www.sii-me.com

Copyright © 2018 Seiko Instruments Inc. All Right Reserved.
No.BAC3017EJ-01C1808

(Specifications are subject to change without notice.)

Released in August 2018